• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis and Improvement of Cross-dock Operations in Less-than-Truckload Freight Transportaion Industry

Tong, Xiangshang 09 September 2009 (has links)
The less-than-truckload (LTL) transportation industry is highly competitive with low profit margins. Carriers in this industry strive to reduce costs and improve customer service to remain profitable. LTL carriers rely on a network of hubs and service centers to transfer freight. A hub is typically a cross docking terminal in which shipments from inbound trailers are unloaded and reassigned and consolidated onto outbound trailers going to the correct destinations. Freight handling in a hub is labor intensive, and workers must quickly transfer freight during a short time period to support customer service levels. Reducing shipment transfer time in hubs offers the opportunity to reduce labor costs, improve customer service, and increase competitive advantages for carriers. This research focuses on improving the efficiency of hub operations in order to decrease the handling costs and increase service levels for LTL carriers. Specifically, the following two decision problems are investigated: (1) assigning trailers to dock doors to minimize the total time required to transfer shipments from inbound trailers to destination trailers and (2) sequencing unloading and loading of freight to minimize the time required by dock employees. The trailer-to-door assignment problem is modeled as a Quadratic Assignment Problem (QAP). Both semi-permanent and dynamic layouts for the trailer-to-door assignment problem are evaluated. Improvement based heuristics, including pair-wise exchange, simulated annealing, and genetic algorithms, are explored to solve the trailer-to-door assignment problem. The freight sequencing problem is modeled as a Rural Postman Problem (RPP). A Balance and Connect Algorithm (BCA) and an Assign First and Route Second Algorithm (AFRSA) are investigated and compared to Balanced Trailer-at-a-Time (BTAAT), Balanced Trailer-at-a-Time with Offloading (BTAATWO), and Nearest Neighbor (NN). The heuristics are evaluated using data from two LTL carriers. For these data sets, both the total travel distance and the transfer time of hub operations are reduced using a dynamic layout with efficient freight sequencing approaches, such as the Balance and Connect Algorithm (BCA), the Balanced Trailer-at-a-Time with Offloading (BTAATWO), and the Nearest Neighbor (NN). Specifically, with a dynamic layout, the BCA reduces travel distance by 10% to 27% over BTAAT and reduces the transfer time by 17% to 68% over BTAAT. A simulation study is also conducted for hub operations in a dynamic and stochastic environment. The solutions from the door assignment and freight sequencing approaches are evaluated in a simulation model to determine their effectiveness in this environment. The simulation results further demonstrate that the performance measures of hub operations are improved using a dynamic layout and efficient freight sequencing approaches. The main contributions of this research are the integer programming models developed for the freight sequencing problem (FSP), based on the Rural Postman Problem (RPP). This is the first known application of the RPP for the FSP. Efficient heuristics are developed for the FSP for a single worker and for multiple workers. These heuristics are analyzed and compared to previous research using industry data. / Ph. D.
2

Improving the Efficiency of Hub Operations in a Less-than-Truckload Distribution Network

Brown, Amy Michelle 01 September 2003 (has links)
The less-than-truckload (LTL) industry is highly competitive, with recent average profit margins less than 3%. LTL shipments are routed through a network of service centers and hubs. The performance of the entire LTL distribution network is highly dependent on the speed and accuracy of the hub operations. The focus of this research effort is to improve hub operations in order to reduce costs and increase service performance levels. Specifically, new approaches are investigated for assigning trailers to dock doors and sequencing the unloading of shipments at hubs. This thesis reviews current industry practices and available research literature on hub operations. Solution approaches for the trailer-to-door assignment and freight sequencing problems are presented along with case study results. The main performance measures are bottleneck time, total labor time, and total travel distance. For the trailer-to-door assignment problem, also referred to as the hub layout problem, the three approaches investigated are the original approach, a semi-permanent approach, and a dynamic approach. For the freight sequencing problem, the five approaches evaluated are trailer-at-a-time, trailer-at-a-time with offloading, nearest neighbor within a group, nearest neighbor within a shared group, and nearest neighbor. The approaches are implemented in C++ and analyzed using data from a regional LTL carrier. The case study results indicate that the dynamic layout performs significantly better than the original and semi-permanent layout for total distance, total labor time, and bottleneck time. For total distance and total labor time, the dynamic layout with nearest neighbor sequencing is the preferred approach. For bottleneck time, the dynamic layout with trailer-at-a-time with offloading performs best, while the nearest neighbor sequencing approach performs almost as well. In general, the case study results indicate that a dynamic layout with either a trailer-at-a-time with offloading approach or a nearest neighbor approach offers the largest potential for improvement. The assumptions and results of the hub layout and freight sequencing approaches are further evaluated using a simulation model. The simulation model indicates that a dynamic layout with nearest neighbor sequencing offers the largest potential for improvement in a more realistic environment with probabilistic and dynamic events. The simulation results also indicate that the trailer-at-a-time with offloading approach may need to be modified to account for more realistic dock conditions. In summary, the approaches explored in this research offer significant opportunity to improve hub operations through reducing bottleneck time, total labor time, and total travel distance. / Master of Science

Page generated in 0.3418 seconds