• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Detect Sense and Avoid Radar for UAV Avionics Telemetry

Seybert, Audrey, Fuller, Jay, Townley, Bryan 10 1900 (has links)
ITC/USA 2011 Conference Proceedings / The Forty-Seventh Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2011 / Bally's Las Vegas, Las Vegas, Nevada / This paper describes the development and test results of a Frequency Modulated Continuous Wave (FMCW) L-Band radar testbed designed to detect obstacles in the proximity of an Unmanned Aerial Vehicle (UAV). From laboratory loopback tests, it was calculated that with pulse compression and a transmit power of 150 mW (22 dBm), the radar is capable of detecting an object with a 0.014-m2 radar cross-sectional area at ranges between 500 ft to 1 mi. Analysis shows that post processing of the collected data would reveal information about the obstacle such as its range and location relative to the aircraft. Design and testing procedures are discussed.
2

REMOTE PULSE MONITORING USING MILLIMETER WAVES

GARG, PRAFULL January 2021 (has links)
With the population aging worldwide, new solutions for non-invasive health monitoring are required. Radar systems have been proposed as a promising technology for monitoring vital signs in ambient assisted living (AAL) applications. Monitoring vital signs such as breathing rate, heart rate, and pulse rate can provide crucial insights into human well-being and detect a wide range of medical problems. The main focus of mm-wave radar applications is currently geared towards the automotive market; however, several potential application areas within the broad industrial and healthcare domain are also under active investigation. Their major advantage is that, without the need for any cable or electrode, it is possible, at first, to locate the patient inside the room and, then, to measure their respiratory rate and heartbeat. A contactless detection method offers the simple and fast monitoring of vital signs without the disadvantages of current practices. One very promising approach is the use of radar technology. This thesis focuses on finding the safe way of using mm-Wave propagation in a hospital's real-world scenario and finding the safe range of frequency and power dissipation that won’t be harmful to the human body.  Objective: In this thesis, we investigate the optimum range of frequency and power of mm-Wave propagation, which can be considered safe for usage in an environment like hospitals. Also, the range of power with respect to the power density which can be considered safe for implementation in E-health systems.  Methods: Simulation is considered the method to find various range brackets for different parameters like frequencies, distances, bandwidths, and power. The simulation also helps to get a large number of results for a closer approximation. The received signal is observed to get the desired results, and using the available data, the ranges are found for safe usage of the forementioned technologies.  Results: The results obtained are tabulated to show the relation of received signal strength with all the other parameters like frequency, distance, and power. Then using the power and received signal relation, the safe range of power is calculated, which can be used in a closed environment like hospitals.

Page generated in 0.1072 seconds