Spelling suggestions: "subject:"bfrequency stabilisation"" "subject:"4frequency stabilisation""
1 |
Neue Prinzipien zur Realisierung von gepulsten, frequenzstabilisierten Lasern mit hoher mittlerer Leistung und exzellenter Strahlqualität / New Principles for realizing pulsed frequency stabilised lasers with high power and excellent beam qualitySträßer, Alexander January 2007 (has links)
Wasserdampf in der Stratosphäre und Troposphäre ist eines der wichtigsten atmosphärischen Treibhausgase. Neben seiner Bedeutung für das Klima hat es großen Einfluss auf die Bildung von polaren stratosphärischen Wolken sowie auf die atmosphärische Chemie.
Weltweit erstmalig soll innerhalb eines Forscherverbundes in Deutschland ein leistungsstarkes, mobiles, abtastendes Wasserdampf-DIAL zur dreidimensional hochaufgelösten Messung des atmosphärischen Wasserdampfs entwickelt werden. Mit dem Wasserdampf-DIAL können Wasserdampfkonzentrationen in der Atmosphäre mit hoher zeitlicher und räumlicher Auflösung gemessen werden.
Das DIAL basiert auf einem Titan-Saphir-Laser oder einem dazu alternativen OPO-Laser (optisch parametrischer Oszillator). Der für das optische Pumpen dieser Laser nötige Pumplaser wurde im Rahmen dieser Arbeit in der Arbeitsgruppe Nichtlineare Optik des Instituts für Physik der Universität Potsdam entwickelt. Ein hochauflösendes, mobiles DIAL erfordert einen Pumplaser mit großen Pulsenergien, guter Strahlqualität und einer hohen Effizienz.
Um diese Ziele zu erreichen, wurde ein MOPA-System (Master Oscillator Power Amplifier) mit Frequenzstabilisierung auf der Basis von doppelbrechungskompensierten, transversal diodengepumpten Laserstäben entwickelt und untersucht. Auf dem Weg dahin wurden unterschiedliche Realisierungsmöglichkeiten des MOPA-Systems geprüft. Im Rahmen dessen wurden die Festkörperlasermaterialien Yb:YAG [1], kerndotierte Nd:YAG-Keramik [2] und herkömmliches Nd:YAG vorgestellt und hinsichtlich ihrer Eignung für dieses MOPA-System untersucht. Nachdem die Entscheidung für Nd:YAG als laseraktives Material gefallen war, konnte darauf aufbauend die Konzeptionierung des Lasersystems auf der Basis von Verstärkungsrechnungen vorgenommen werden. Die entwickelte Verstärkungsrechnung trägt den Tatbeständen von realen Systemen Rechnung, indem radiusabhängige Intensitäten und eine radiale, nicht homogene Inversionsdichte berücksichtigt werden.
Die Frequenzstabilisierung des gepulsten Oszillators (Frequenzstabilität von 1 MHz) wurde mittels des Pound-Drever-Hall-Verfahrens vorgenommen. Mit der Heterodynmethode wird die Frequenzstabilität des Oszillators gemessen. Nach Untersuchungen über verschiedene Konfigurationen für lineare und ringförmige Oszillatoren, wurde ein Ringoszillator mit zwei Laserköpfen aufgebaut, in welchen von außen mit einem Laser fester Frequenz eingestrahlt wird. Dieser emittiert bei einer Wiederholrate von 400 Hz eine Pulsenergie von Eout = 21 mJ bei nahezu beugungsbegrenzter Strahlqualität (M2 < 1,2). Die Verstärkung dieser Laserpulse erfolgte zunächst durch eine Vorverstärkerstufe und anschließend durch zwei doppelbrechungskompensierte Hauptverstärker im Doppeldurchgang. Eine gute Strahlqualität (M2 = 1,75) konnte unter anderem erzielt werden, indem der Doppeldurchgang durch die Hauptverstärker mit einem phasenkonjugierenden Spiegel (SF6), auf der Basis der stimulierten Brillouin Streuung, realisiert wurde. Der entwickelte Laser emittiert Pulse mit einer Länge von 25 ns und einer Energie von 250 mJ. Insgesamt wurde ein bisher einmaliges Lasersystem entwickelt. In der Literatur sind die erreichte Frequenzstabilität, Strahlqualität und Leistung in dieser Kombination bisher nicht dokumentiert.
In der Zukunft soll durch den Einsatz von kerndotierten, keramischen Lasermaterialien, höheren Pumpleistungen der Hauptverstärker und phasenkonjugierenden Spiegeln aus Quarz die Pulsenergie des Systems weiter erhöht werden.
[1] M. Ostermeyer, A. Straesser, “Theoretical investigation of Yb:YAG as laser material for nanosecond pulse emission with large energies in the joule range”, Optics Communications, Vol. 274, pp. 422-428 (2007)
[2] A. Sträßer and M. Ostermeyer, “Improving the brightness of side pumped power amplifiers by using core doped ceramic rods”, Optics Express, Vol. 14, pp. 6687- 6693 (2006) / Vapour in the stratosphere and troposphere is one of the most important atmospheric greenhouse gases. Apart from its importance for the climate it has a great influence on the formation of polar stratospheric clouds as well as the atmospheric chemistry.
A German research group is currently developing the world’s first powerful, mobile, screening vapour-DIAL, which can measure the atmospheric vapour three-dimensionally and in high resolution. Vapour concentrations in the atmosphere can be measured in high temporal and local resolution with this vapour-DIAL.
The DIAL is based on a titan-saphire-laser or an alternative OPO-laser (Optical Parametric Oscillator). The seeding-laser, which is needed in order to seed those lasers, was developed in the course of this work by the research group for nonlinear optics in the institute for physics at the University of Potsdam. A highly-resolutive, mobile DIAL needs a seeding-laser with high pulse energy, excellent beam quality and high efficiency.
In order to realise this, a frequency stabilised MOPA-System (Master Oscillator Power Amplifier) was developed, which based on birefringence-compensated, transversally diode-pumped laser rods. During the research process several ways to realise the MOPA-System were investigated. In this process the solid laser materials Yb:YAG [1], core-doped Nd:YAG-Ceramics [2] und conventional Nd:YAG were introduced and their suitability for the MOPA-System was investigated.
After the choice for Nd:YAG as laser-active material was made, the concept of the laser-system could be developed based on amplification-calculations. The amplification-calculation meets the requirements of real systems, because intensities depending on diameter and a radial, non-homogeneous inversion density are being taken into consideration. The frequency of the pulsed oscillator (frequency stabilisation of 1 MHz) was stabilised by means of the Pound-Drever-Hall-Method.
The frequency stability of the oscillator is measured using the Heterodyn-Method. After the investigation of different configurations for linear and circular oscillators a circular oscillator with two laser heads was set up, which is injection-seeded by a second laser with a stable frequency. At a repetition rate of 400 Hz the circular oscillator emits a pulse energy of Eout = 21 mJ with almost diffraction-limited beam quality (M2 < 1.2). These laser pulses were first amplified by a pre-amplifier and afterwards by two birefringence compensated main-amplifier in doublepass. Among other factors, an excellent beam quality (M2 = 1.75) could be reached by the doublepass through the main amplifier realised with a phase conjugating mirror (SF6) based on stimulated Brillouin-scattering. The developed laser emits pulses that are of 25 ns length and have an energy of 250 mJ.
A currently unique laser system was developed. In the research findings there are no previous documents of the combination of the reached stability of frequency, beam quality and power in one system.
In the future the pulse energy of the system is to be further increased through the use of core-doped, ceramic laser material, a higher pump power of the main amplifiers and phase-conjugating mirrors made of quartz.
[1] M. Ostermeyer, A. Straesser, “Theoretical investigation of Yb:YAG as laser material for nanosecond pulse emission with large energies in the joule range”, Optics Communications, Vol. 274, pp. 422-428 (2007)
[2] A. Sträßer and M. Ostermeyer, “Improving the brightness of side pumped power amplifiers by using core doped ceramic rods”, Optics Express, Vol. 14, pp. 6687- 6693 (2006)
|
2 |
Blue laser for precision spectroscopy : toward optical frequency standard referenced to laser cooled calcium atomsGrishina, Vera January 2008 (has links)
Optical frequency standards with the reference to a narrow electronic transition of a laser-cooled collection of neutral atomic particles are becoming essential tools of research in modern precision physics experiments. In the core of a building block of an optical frequency standard is the optical continuous wave laser that has a good spectral purity of the emitted light. Such a stable optical oscillator is highly desirable in high resolution spectroscopy, if it emits in a good quality beam at a short visible wavelength. This Master thesis explores efficient techniques for building such an optical frequency source intended for use in the cooling and trapping of Calcium atoms scheme. The strong dipole transition at the blue wavelength in the atomic Calcium is needed to reduce the kinetic energy of atoms by nearly six orders of magnitude. A further reduction in the thermal energy of the laser cooled atoms is required to locate with ultra-high precision the 400 Hz narrow clock transition of the stable 40Ca isotope. The experimental methods that achieve this and approach sub-microkelvin temperature of the laser cooled bosonic isotopes of alkaline earths are inspected. The blue laser with a uniform intensity distribution in the beam is useful to maintain the trapped number of cold atoms during these experiments. The spectroscopic properties of the relative transitions in Calcium atom are also reviewed following relevant publications in the area. The constructed blue laser can be used as a primary wavelength source in the lasers network for cooling and trapping of Calcium atoms. These experiments will constitute part of the project to build an optical atom clock referenced to 40Ca narrow linewidth transition. The blue laser is constructed by generating second harmonic in a Potassium Niobate crystal, which is temperature controlled to use a type-I noncritical phase-matching of the optical nonlinear process. The power of the intracavity-generated second harmonic depends on the resonance properties of the optical resonator where this nonlinear crystal is placed. The study is aimed at characterising the designed optical resonator and the experimental parameters that describe it. The formula is derived that relates the resonance power enhancement coefficient with finesse and the power coupling contrast of a passive optical cavity. The obtained relationship is verfied during the experiments. The produced efficiency of the intracavity second harmonic generation is approx. 0.0023 mWblue/(mWred)2. The research work also examines the noise characteristics of the infrared diode laser that is used as a pump source for the intracavity generated second harmonic and determines the spectroscopic precision of the produced blue light. The frequency locking experiment is analysed using the unbalanced scheme of the polarisation stabilisation technique. The designed optical buildup cavity became a part of the unbalanced frequency discriminator in such a scheme. The results demonstrate high gain of frequency noise suppression of the stabilised laser. The unbalanced arrangement of the H}ansch-Couillaud technique has been possible due to a very low amplitude noise of semiconductor lasers.
|
3 |
Advanced Interferometry for Gravitational Wave DetectionShaddock, Daniel Anthony, Daniel.Shaddock@jpl.nasa.gov January 2001 (has links)
In this thesis we investigate advanced techniques for the readout and control of various interferometers. In particular, we present experimental investigations of interferometer configurations and control techniques to be used in second generation interferometric gravitational wave detectors. We also present a new technique, tilt locking, for the readout and control of optical interferometers.
¶
We report the first experimental demonstration of a Sagnac interferometer with resonant sideband extraction (RSE). We measure the frequency response to modulation of the length of the arms and demonstrate an increase in signal bandwidth of by a factor of 6.5 compared to the Sagnac with arm cavities only. We compare Sagnac interferometers based on optical cavities with cavity-based Michelson interferometers and find that the Sagnac configuration has little overall advantage in a cavity-based system.
¶
A system for the control and signal extraction of a power recycled Michelson interferometer with RSE is presented. This control system employs a frontal modulation scheme requiring a phase modulated carrier field and a phase modulated subcarrier field. The system is capable of locking all 5 length degrees of freedom and allows the signal cavity to be detuned over the entire range of possibilities, in principle, whilst maintaining lock. We analytically investigate the modulation/demodulation techniques used to obtain these error signals, presenting an introductory explanation of single sideband modulation/demodulation and double demodulation.
¶
This control system is implemented on a benchtop prototype interferometer. We discuss technical problems associated with production of the input beam modulation components and present several solutions. Operation of the interferometer is demonstrated for a wide range of detunings. The frequency response of the interferometer is measured for various detuned points and we observe good agreement with theoretical predictions. The ability of the control system to maintain lock as the interferometer is detuned is experimentally demonstrated.
¶
Tilt locking, a new technique to obtain an error signal to lock a laser to an optical cavity, is presented. This technique produces an error signal by efficient measurement of the interference between the TEM00 and TEM10 modes. We perform experimental and theoretical comparisons with the widely used Pound-Drever-Hall (PDH) technique. We derive the quantum noise limit to the sensitivity of a measurement of the beam position, and using this result calculate the shot noise limited sensitivity of tilt locking. We show that tilt locking has a quantum efficiency of 80%, compared to 82% for the PDH technique.
We present experimental demonstrations of tilt locking in several applications including frequency stabilisation, continuous-wave second harmonic generation, and injection locking of a Nd:YAG slab laser. In each of these cases, we demonstrate that the performance of tilt locking is not the limiting factor of the lock stability, and show that it achieves similar performance to the PDH based system.
¶
Finally, we discuss how tilt locking can be effectively applied to two beam interferometers. We show experimentally how a two beam interferometer typically gives excellent isolation against errors arising from changes in the photodetector position, and experimentally demonstrate the use of tilt locking as a signal readout system for a Sagnac interferometer.
|
4 |
Holographic imaging of cold atomsTurner, Lincoln David Unknown Date (has links) (PDF)
This thesis presents a new optical imaging technique which measures the structure of objects without the use of lenses. Termed diffraction-contrast imaging (DCI), the method retrieves the object structure from a Fresnel diffraction pattern of the object, using a deconvolution algorithm. DCI is particularly adept at imaging highly transparent objects and this is demonstrated by retrieving the structure of an almost transparent cloud of laser-cooled atoms. Applied to transparent Bose-Einstein condensates, DCI should allow the non-destructive imaging of the condensate while requiring only the minimum possible apparatus of a light source and a detector. (For complete abstract open document)
|
Page generated in 0.1195 seconds