• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 279
  • 14
  • 9
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 375
  • 375
  • 107
  • 99
  • 91
  • 80
  • 65
  • 60
  • 52
  • 50
  • 45
  • 44
  • 43
  • 36
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Spatial patterns of invertebrate communities in spring and runoff-fed streams : a thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Ecology at Massey University, Palmerston North, New Zealand

Barquín Ortiz, José January 2004 (has links)
Invertebrate spatial patterns were investigated in 36 and 12 spring and runoff-fed streams in New Zealand and in Northern Spain, respectively. Moss biomass and resource levels were more abundant in springbrooks than in runoff-fed streams. Invertebrate densities were greater in spring habitats, but invertebrate richness was higher and lower at more stable sites in New Zealand and Spain, respectively. These differences in invertebrate diversity may be related to the larger diversity of invertebrate predators in New Zealand springbrooks, and the lack of temperature mediated life history cues in the New Zealand invertebrate fauna. I carried out two experiments to look at the effect of local factors on the spatial distribution of invertebrate communities. The first experiment investigated the effect that algal biomass and habitat structure had on stream invertebrate communities. To do this I used artificial canopies to reduce algal growth and artificial substrates with different habitat complexities. Numbers of invertebrate taxa and individuals were both lower on bricks under the artificial canopies and on the simplest substrates. Algal productivity may enhance invertebrate richness by increasing the number of individuals in a given area, whereas habitat complexity may increase invertebrate richness by providing greater food and/or space resources. The second experiment examined the effects of primary productivity and physical disturbance on stream invertebrates by using artificial canopies and by kicking and raking patches of the stream bed (10 m2). We compared the effects of natural versus experimental disturbance on the benthic invertebrate fauna Invertebrate fauna in high productivity patches recovered quicker than in low productivity patches after both experimental and natural disturbance. The experimental disturbance reduced number of invertebrate taxa and individuals to a greater extent than the spate. Primary productivity limited the recovery of the invertebrate fauna after the disturbances. I also investigated temperature patterns in five runoff and seven spring-fed streams in the North and South Islands of New Zealand. The invertebrate fauna was sampled at 4 distances (0, 100, 500 and 1 km) from seven spring sources. Temperature variability was much larger for runoff-fed streams than for springs, and it increased with distance from the source. Flow, altitude, and the number and type (i.e., spring or runoff-fed) of tributaries joining the springbrook channel determined the degree of temperature variability downstream of the spring sources. Moving downstream, invertebrate communities progressively incorporated taxa with higher mobility and those more common to runoff-fed streams. Changes in substrate composition, stability and invertebrate drift are more likely explanations of the observed longitudinal patterns in the invertebrate communities than changes in temperature regimes.
222

Predator effects on behaviour and life-history of prey

Brodin, Tomas January 2005 (has links)
<p>In this thesis I investigate predator-induced effects on behavioural and life-history characteristics of prey. At any moment a given predator is capable of attacking a small number of prey. However, the mere presence of a predator may impact a much larger number of individuals, as prey implement various behavioural and developmental mechanisms to reduce the risk of predation. It has become increasingly clear that predator induced responses have the potential to affect patterns of species abundance and distribution as well as individual fitness of prey. I study these responses by incorporating field surveys, semi-field experiments and laboratory experiments. All experiments were done in an aquatic environment using fish or large odonate larvae as predators and damselfly-or diving beetle larvae as prey.</p><p>My work highlights the importance of monitoring prey behaviour when studying life-history characteristics. I show that fish presence is an important factor for determining species abundance and distribution of odonates, and that prey behaviour may be a good predictor for fish vulnerability. Larval damselflies react behaviourally to predator presence by reducing activity and/or restricting habitat use. I confirm that such anti-predator responses have positive effects on prey survival in the presence of a predator but negative effects on growth and development of prey. In addition, my results suggest that the increase in per capita food resources for surviving prey following a predation episode (i.e. thinning) can have a stronger positive effect on prey growth and development than the negative effect of anti-predator responses. I also show that the strength of an anti-predator response is dependent on resource availability of the prey, with prey responding less strongly when resources are scarce. My results also indicate that the strength of the anti-predator response of damselfly larvae depends on predator diet and larval age. Predators feeding on prey conspecifics induce a stronger behavioural response in young larva than predators that feed on prey heterospecifics do. This diet-effect was not found in larvae late in ontogeny, due to an increased activity of larva where predators consumed damselflies. Such increased larval activity can be explained as a reaction to a time-constraint. Finally, I found that activity of damselfly larvae is genetically determined and that this has lead to a behavioural syndrome that might limit larval plasticity to a certain activity-range. This phenomenon may have implications for how well larvae are able to react to both biotic and abiotic changes in the environment.</p>
223

Predator effects on behaviour and life-history of prey

Brodin, Tomas January 2005 (has links)
In this thesis I investigate predator-induced effects on behavioural and life-history characteristics of prey. At any moment a given predator is capable of attacking a small number of prey. However, the mere presence of a predator may impact a much larger number of individuals, as prey implement various behavioural and developmental mechanisms to reduce the risk of predation. It has become increasingly clear that predator induced responses have the potential to affect patterns of species abundance and distribution as well as individual fitness of prey. I study these responses by incorporating field surveys, semi-field experiments and laboratory experiments. All experiments were done in an aquatic environment using fish or large odonate larvae as predators and damselfly-or diving beetle larvae as prey. My work highlights the importance of monitoring prey behaviour when studying life-history characteristics. I show that fish presence is an important factor for determining species abundance and distribution of odonates, and that prey behaviour may be a good predictor for fish vulnerability. Larval damselflies react behaviourally to predator presence by reducing activity and/or restricting habitat use. I confirm that such anti-predator responses have positive effects on prey survival in the presence of a predator but negative effects on growth and development of prey. In addition, my results suggest that the increase in per capita food resources for surviving prey following a predation episode (i.e. thinning) can have a stronger positive effect on prey growth and development than the negative effect of anti-predator responses. I also show that the strength of an anti-predator response is dependent on resource availability of the prey, with prey responding less strongly when resources are scarce. My results also indicate that the strength of the anti-predator response of damselfly larvae depends on predator diet and larval age. Predators feeding on prey conspecifics induce a stronger behavioural response in young larva than predators that feed on prey heterospecifics do. This diet-effect was not found in larvae late in ontogeny, due to an increased activity of larva where predators consumed damselflies. Such increased larval activity can be explained as a reaction to a time-constraint. Finally, I found that activity of damselfly larvae is genetically determined and that this has lead to a behavioural syndrome that might limit larval plasticity to a certain activity-range. This phenomenon may have implications for how well larvae are able to react to both biotic and abiotic changes in the environment.
224

The aquatic microbial food web and occurence of predation-resistant and potentially pathogenic bacteria, such as Francisella tularensis

Thelaus, Johanna January 2008 (has links)
All natural aquatic systems harbour a vast variety of microorganisms. In the aquatic microbial food web, the larger microorganisms (i.e. protozoa) feed on the smaller microorganisms (i.e. bacteria and phytoplankton). An increase in nutrient availability results in changes of the microbial food web structure, like altered community composition and blooms of toxic phytoplankton. In this thesis work I hypothesised that nutrient-rich aquatic environments, with strong protozoan predation, favour the occurrence of predation-resistant bacteria like F. tularensis, and that the microbial food web may provide a reservoir for the bacterium between outbreaks. By using a size-structured ecosystem food web model it was shown that the protozoan predation pressure on bacteria, defined as protozoan predation per bacterial biomass, increases with increasing nutrient availability in aquatic systems (estimated chlorophyll a 0.2 to 112 μg L-1). This dynamics was caused by increasing growth-rate of a relatively constant number of bacterial cells, maintaining the growth of an increasing number of protozoan cells. The results were supported by meta-analysis of field studies. Thus my results suggest that protozoa control the bacterial community by predation in nutrient-rich environments. In a field study in a natural productivity gradient (chlorophyll a 1.4 to 31 μg L-1) it was shown that intense selection pressure from protozoan predators, favours predation-resistant forms of bacteria. Thus, the abundance of predation-resistant bacteria increases with increasing nutrient availability in lakes. Furthermore, I could demonstrate that the bacterium Francisella tularensis, the causative agent of tularemia, was present in eutrophic aquatic systems in an emerging tularemia area. Isolated strains of the bacterium were found to be resistant to protozoan predation. In a microcosm study, using natural lake water, high nutrient availability in combination with high abundance of a small colourless flagellate predator favoured the occurrence of F. tularensis holarctica. In laboratory experiments F. tularensis strains were able to form biofilm at temperatures between 30-37°C, but not below 30°C. In conclusion, I have shown that the protozoan predation pressure on bacteria increases with increasing nutrient availability in aquatic systems. Predation-resistant forms of bacteria, such as F. tularensis are favoured in nutrient-rich environments. The complexity of the microbial food web and nutrient-richness of the water, influence the transmission of the pathogenic F. tularensis holarctica. However, over long periods of time, the bacterium survives in lake water but may lose its virulence. The temperature-regulated biofilm formation by F. tularensis may play a role in colonization of vectors or for colonization of hosts, rather than for survival in aquatic environments.
225

Påverkan av Asellus aquaticus (sötvattensgråsugga) på resuspension av partiklar i våtmarker / The impact of Asellus aquaticus (water louse) on resuspension of particles in wetlands

Ekman Söderholm, Agnes January 2011 (has links)
Anlagda våtmarker i avrinningsområden från jordbruksmarker mottar ofta vatten med höga halter av partikelbunden fosfor. Den viktigaste processen för avskiljning av inkommande partikelbunden fosfor är sedimentation. Resuspension är en process som motverkar netto-sedimentationen av partiklar och kan således minska våtmarkers förmåga att hålla kvar fosfor. Syftet med den här studien var att undersöka om A. aquaticus påverkar resuspensionen av partiklar, och om större tätheter av A. aquaticus orsakar större turbiditet i vattenmassan. Två försök genomfördes i plastakvarier med sediment insamlat från våtmarker anlagda på lerjord. Varje försöksuppställning bestod av en behandling och en kontroll utan några djur. I det första försöket innehöll behandlingen A. aquaticus motsvarande en täthet på 2083 individer m-2 och i det andra försöket en täthet på 500 individer m-2. Turbiditeten mättes med en turbidimeter en gång per dag under sju dygn. Aktiviteten hos A. aquaticus orsakade en signifikant högre turbiditet i vattenmassan i behandlingen än i kontrollen. Turbiditeten var i genomsnitt 161 NTU i akvarier med 2083 individer m-2 och 37 NTU i akvarier med 500 individer m-2. Slutsatsen som drogs är att förekomst av A. aquaticus skulle kunna öka resuspensionen av partiklar i våtmarker. Detta kan i sin tur ha en påverkan på våtmarkers förmåga att hålla kvar fosfor som är bundet till lerpartiklar. / Constructed wetlands in agricultural catchments with clay soils often receive water with high concentrations of particle-bound phosphorus. Sedimentation of particle-bound phosphorus is the main retention process. Resuspension is a process that counteracts net sedimentation of the particles and can therefore reduce phosphorus retention in wetlands. The aim of this study was to investigate if A. aquaticus through bioturbation affects the resuspension of particles, and if a larger density of A. aquaticus causes a larger turbidity in the water column. The experimental design included plastic aquariums with sediment collected from wetlands constructed on clay soils. There were two experiments, each with a treatment and a control with no animals. In the first experiment, the treatment contained A. aquaticus at a density of 2083 individuals m-2. In the second experiment the treatment contained A. aquaticus at a density of 500 individuals m-2. Turbidity was measured with a turbidimeter once a day over the course of seven days. The bioturbation activity of the A. aquaticus caused a significantly larger turbidity in the water column in the treatment than in the control. The turbidity was on average 161 NTU in the presence of 2083 individuals m-2 and 37 NTU in the presence of 500 individuals m-2. The conclusion was that the presence of A. aquaticus can increase resuspension of particles in wetlands. This could have a negative impact on the ability of wetlands to retain phosphorus that is bound to particles.
226

Påverkan av Asellus aquaticus (sötvattensgråsugga) på resuspension av partiklar i våtmarker / The impact of Asellus aquaticus (water louse) on resuspension of particles in wetlands

Lundberg, Johanna January 2011 (has links)
Fosfor (P) är ofta det begränsande ämnet i akvatiska system och kan i höga mängder bidra till övergödning i sjöar och hav. För att minska tillförseln av partikelbunden fosfor som läcker från jordbruksmark kan våtmarker anläggas i avrinningsområdet. För en effektiv avskiljning är det viktigt att partiklar sedimenterar i våtmarken och stannar i sedimentet. Studier har visat att vissa karpfiskar och märlkräftor genom bioturbation kan orsaka resuspension av partiklar, samt att effekten ökar med ökad täthet. Syftet med denna studie var att undersöka om även makroevertebraten Asellus aquaticus (sötvattensgråsugga) kan orsaka resuspension av partiklar. Två hypoteser undersöktes: (i) A. aquaticus orsakar resuspension av sedimenterade partiklar; (ii) ökad täthet av A. aquaticus ger ökad resuspension. Två försök genomfördes och varje försöksuppställning bestod av 15 akvarier, varav finpartikulärt sediment och bäckvatten tillsattes till tio stycken medan fem innehöll endast bäckvatten. I hälften av akvarierna med sediment tillsattes A. aquaticus i olika täthet för försöken. Försöken pågick i sju dygn med dagliga mätningar av vattnets grumlighet. Resultat från försöken bekräftade båda hypoteserna. Genomsnittlig grumlighet efter sju dygn var 161 NTU (143 mg L-1 TSS) vid en täthet på 2083 A. aquaticus m-2 och 37 NTU (26 mg L-1 TSS) vid 500 A. aquaticus m-2. Studiens resultat indikerar att A. aquaticus kan ha en negativ påverkan på retentionen av partikelbunden fosfor i våtmarker. / Phosphorus (P) is often the limiting nutrient in aquatic systems and can in excessive quantities cause eutrophication in lakes and seas. To reduce the input of particle-bound phosphorus leaking from agricultural land, wetlands can be constructed as traps for particles. It is important that particles settle in the wetland and remain in the sediment. Studies have shown that bioturbation by e.g. common carp and amphipods can cause resuspension of settled particles, and that the effect increases with an increasing density of organisms. The purpose of this study was to examine if the macroinvertebrate Asellus aquaticus can also cause resuspension of particles. Two hypotheses were tested: (i) bioturbation by A. aquaticus will cause resuspension of particles; (ii) an increased density of A. aquaticus increases the resuspension of particles. This was tested in two experiments, each of which included 15 aquaria. In ten of these, sediment and stream water were added. To five of the aquaria with sediment, A. aquaticus were added in different densities for the two experiments. Water turbidity was measured daily for seven days. The results confirmed both hypotheses. Average turbidity after seven days was 161 NTU (143 mg L-1 TSS) at a density of 2083 m-2 and 37 NTU (26 mg L-1 TSS) at 500 m-2. The results indicate that the presence of A. aquaticus may have a negative impact on the retention of particle-bound phosphorus in wetlands.
227

A prototype decision support system for streambank rehabilitation.

Schoeman, Kilaan Christopher. January 2001 (has links)
The condition of a stream is often judged by the state of its banks. This, the lack of adequate advice for streambank rehabilitation, and the drive by legislation, particularly the National Water Act, 1998 (RSA Act no. 36 of 1998) and the National Environmental Management Act, 1998 (RSA Act no. 107 of 1998), to restore South African riparian areas, created a need for more information into such systems. Identifying a gap in what we know about rehabilitating degraded streambanks led to the development of a decision support system for the selection of streambank rehabilitation techniques. The Streambank Rehabilitation Decision Support System, or SR-DSS, aims to provide riparian managers with advice on choice of technique at degraded streambank locations along a river system. Techniques were sought from the scientific literature and organised to recommend appropriate techniques for combating certain erosive processes. Rutherford et al. (1999) conclude that placing priority on sites of lower importance may be an inefficient manner of spending the resources at hand. Foreseeing this likelihood, a priority setting system was developed and based on the principles of Rutherfurd et al. (1999). These principles aim to prioritise human interests without compromising ecological interests. Along a given stream, the areas of degradation that compromise property will nearly always have the highest priority. Once these have been addressed, sites of ecological value are taken into consideration followed by sites that require substantial effort to restore. It is argued that sites taking substantial effort to restore have the least to 'loose' should they degrade further. To enable the use of these principles a site scoring system was developed, so that sites could be prioritised. This was based on the value and threat rating tables developed by Heron et al. (1999). It was soon realised that a framework was needed within which the above could be set. For this purpose, Kapitzke's (1999) planning and design procedure was adapted to form an eleven-step framework which would guide the rehabilitation venture from priority setting, to the treatment outcome. The rehabilitation approach was tested in the case of the Foxhill Spruit. The small size of the catchment allowed the different segments of the approach (framework, priority setting model, field assessment sheet and SR-DSS) to be tested in real world conditions. The approach was found to have a number of strengths. The framework brought to the attention of the user, the dominant forces at play at each site, and was useful in determining the recommendation given by SR-DSS. The priority setting model allowed sites to be arranged in order of priority, that, according to Rutherfurd et al. (1999), would be the most efficient in terms of ecological value maintained, and resources saved. The field assessment sheet was consistent in rating the degree of intervention required, and in each case directed the user to the appropriate sections in SR-DSS. SR-DSS recommended appropriate techniques that would match the erosive forces occurring at each site. Comparing the technique chosen by SR-DSS to techniques that may have been recommended instead substantiated this finding. The techniques chosen by SR-DSS were found to be superior. This approach considers all aspects of sound streambank rehabilitation and may be used to gain advice on small streams in South Africa. / Thesis (M.Sc.)-University of Natal, Pietermaritzburg, 2001.
228

The relative importance of algae and vascular plant detritus to freshwater wetland food chains /

Campeau, Suzanne January 1990 (has links)
This study examines the relative contribution of algae and vascular plant litter to the food chains of freshwater marshes. Twelve enclosures (5 m diam.) were deployed in a nutrient-poor marsh of the Interlake region of Manitoba. Algae levels in six of the enclosures were increased by fertilizing the water column. In addition, the hardstem bulrush (Scirpus lacustris glaucus (Sm.) Hartm) litter present was replaced with a non-nutritive artificial substrate in half of the fertilized and unfertilized enclosures. Fertilization did not affect the dry weight loss of bulrush litter, but N and P concentrations were higher in the decomposing litter of the fertilized treatments. Dominant taxa of nektonic herbivores-detritivores responded to fertilization but were not affected by the replacement of plant litter by a non-nutritive substrate. Epiphytic herbivores-detritivores responded to changes in both detritus and algal food sources. Fertilization resulted in early peaks of emergence for the Chironominae, Tanypodinae and Orthocladiinae. Emergence data late in the study period suggest that the importance of litter as a food source may increase as decomposition progresses.
229

Boreal Lake Sediments as Sources and Sinks of Carbon

Gudasz, Cristian January 2011 (has links)
Inland waters process large amounts of organic carbon, contributing to CO2 and CH4 emissions, as well as storing organic carbon (OC) over geological timescales. Recently, it has been shown that the magnitude of these processes is of global significance. It is therefore important to understand what regulates OC cycling in inland waters and how is that affected by climate change. This thesis investigates the constraints on microbial processing of sediment OC, as a key factor of the carbon cycling in boreal lakes. Sediment bacterial metabolism was primarily controlled by temperature but also regulated by OC quality/origin. Temperature sensitivity of sediment OC mineralization was similar in contrasting lakes and over long-term. Allochthonous OC had a strong constraining effect on sediment bacterial metabolism and biomass, with increasingly allochthonous sediments supporting decreasing bacterial metabolism and biomass. The bacterial biomass followed the same pattern as bacterial activity and was largely regulated by similar factors. The rapid turnover of bacterial biomass as well as the positive correlation between sediment mineralization and bacterial biomass suggest a limited effect of bacterial grazing. Regardless of the OC source, the sediment microbial community was more similar within season than within lakes. A comparison of data from numerous soils as well as sediments on the temperature response of OC mineralization showed higher temperature sensitivity of the sediment mineralization. Furthermore, the low rates of areal OC mineralization in sediments compared to soils suggest that lakes sediments are hotspots of OC sequestration. Increased sediment mineralization due to increase in temperature in epilimnetic sediments can significantly reduce OC burial in boreal lakes. An increase of temperature, as predicted for Northern latitudes, under different climate warming scenarios by the end of the twenty-first century, resulted in 4–27% decrease in lake sediment OC burial for the entire boreal zone.
230

Forest – stream linkages : Brown trout (Salmo trutta) responses to woody debris, terrestrial invertebrates and light

Gustafsson, Pär January 2011 (has links)
Forests surrounding streams affect aquatic communities in numerous ways, contributing to energy fluxes between terrestrial and lotic ecosystems. The five papers in this thesis focus on woody debris, terrestrial invertebrates and light, three factors influenced by riparian zone structure, potentially affecting streams and brown trout (Salmo trutta). The individual strength of these stressors and their interactions with each other are not well studied, and their qualitative effects may differ both spatially and temporally as well as with the size-structure of specific fish populations. Using a combination of laboratory and field experiments, I examined the effects of woody debris, terrestrial invertebrates and light on prey availability and on the growth rates, diets and behavior of different size-classes of trout. My field experiments showed that addition of high densities of large wood affected trout growth in a positive way. This positive effect of large wood on trout growth may be related to prey abundance, as indicated by the high standing crop of aquatic macroinvertebrates on the wood. The positive effects on trout may also be related to decreased energy expenditures in wood habitats, as trout increased the ratio between numbers of prey captured and time spent active and that swimming activity and level of aggression decreased as wood densities were increased in a laboratory experiment. Terrestrial invertebrates are generally assumed to be a high quality prey resource for fish and my field experiments showed that reduction of terrestrial invertebrate inputs had a negative effect on trout growth. The availability of terrestrial prey in the stream was also coupled to trout diet and linked to growth, as fish with high growth rates had high proportions of terrestrial prey in their diets. Light, measured as PAR, did not have an effect on chlorophyll biomass, nor was there an effect on aquatic macroinvertebrates or trout. Hence, even if light levels were sufficient for increased photosynthesis, other factors such as low nutrient content may have limited the effects. Many of my results were dependent on fish-size. I observed, for example, that large trout had higher capture rates on surface-drifting terrestrial prey than small trout when prey densities were intermediate or high, but at low prey densities, the consumption of terrestrial prey by large and small trout were similar. Moreover, although large wood and terrestrial invertebrates affected growth of both small and large trout, the effects were generally more consistent for large trout. Although changes in riparian forests typically induce an array of interacting effects that certainly call for further research, the overall conclusion from this thesis is that many of the factors I have studied have profound effects on stream biota and trout. The positive effects from large wood also propose that adding trees to streams may partly compensate for negative effects associated with riparian deforestation.

Page generated in 0.067 seconds