• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 17
  • 11
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 101
  • 35
  • 30
  • 20
  • 20
  • 13
  • 12
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

A Nonabelian Landau-Ginzburg B-Model Construction

Sandberg, Ryan Thor 01 August 2015 (has links)
The Landau-Ginzburg (LG) B-Model is a significant feature of singularity theory and mirror symmetry. Krawitz in 2010, guided by work of Kaufmann, provided an explicit construction for the LG B-model when using diagonal symmetries of a quasihomogeneous, nondegenerate polynomial. In this thesis we discuss aspects of how to generalize the LG B-model construction to allow for nondiagonal symmetries of a polynomial, and hence nonabelian symmetry groups. The construction is generalized to the level of graded vector space and the multiplication developed up to an unknown factor. We present complete examples of nonabelian LG B-models for the polynomials x^2y + y^3, x^3y + y^4, and x^3 + y^3 + z^3 + w^2.
42

Equivalence of Classical and Quantum Codes

Pllaha, Tefjol 01 January 2019 (has links)
In classical and quantum information theory there are different types of error-correcting codes being used. We study the equivalence of codes via a classification of their isometries. The isometries of various codes over Frobenius alphabets endowed with various weights typically have a rich and predictable structure. On the other hand, when the alphabet is not Frobenius the isometry group behaves unpredictably. We use character theory to develop a duality theory of partitions over Frobenius bimodules, which is then used to study the equivalence of codes. We also consider instances of codes over non-Frobenius alphabets and establish their isometry groups. Secondly, we focus on quantum stabilizer codes over local Frobenius rings. We estimate their minimum distance and conjecture that they do not underperform quantum stabilizer codes over fields. We introduce symplectic isometries. Isometry groups of binary quantum stabilizer codes are established and then applied to the LU-LC conjecture.
43

Cohomologie rationnelle du groupe linéaire et extensions de bifoncteurs

Touzé, Antoine 26 May 2008 (has links) (PDF)
Le but de cette thèse est d'obtenir des résultats sur la cohomologie rationnelle du groupe linéaire. Nous attaquons ce problème en le transposant dans la catégorie des bifoncteurs polynomiaux, dans laquelle les calculs sont plus aisés. <br /><br />Nous rappelons dans un premier temps la structure de la catégorie des bifoncteurs polynomiaux sur un anneau commutatif quelconque. Nous démontrons que la cohomologie des bifoncteurs calcule la cohomologie rationnelle du groupe linéaire sur un anneau quelconque (ce résultat n'était auparavant connu que sur un corps). Puis nous développons des techniques générales pour le calcul de la cohomologie des bifoncteurs. Nous introduisons notamment de nouveaux outils efficaces pour étudier la torsion de Frobenius en caractéristique p. Enfin, nous appliquons ces méthodes à des familles explicites de bifoncteurs. Nous obtenons ainsi de nouveaux résultats (par exemple des séries de Poincaré) sur la cohomologie rationnelle à valeur dans des représentations classiques, telles que les puissances symétriques et divisées des twists de l'algèbre de Lie du groupe linéaire.
44

Dominant vectors of nonnegative matrices : application to information extraction in large graphs

Ninove, Laure 21 February 2008 (has links)
Objects such as documents, people, words or utilities, that are related in some way, for instance by citations, friendship, appearance in definitions or physical connections, may be conveniently represented using graphs or networks. An increasing number of such relational databases, as for instance the World Wide Web, digital libraries, social networking web sites or phone calls logs, are available. Relevant information may be hidden in these networks. A user may for instance need to get authority web pages on a particular topic or a list of similar documents from a digital library, or to determine communities of friends from a social networking site or a phone calls log. Unfortunately, extracting this information may not be easy. This thesis is devoted to the study of problems related to information extraction in large graphs with the help of dominant vectors of nonnegative matrices. The graph structure is indeed very useful to retrieve information from a relational database. The correspondence between nonnegative matrices and graphs makes Perron--Frobenius methods a powerful tool for the analysis of networks. In a first part, we analyze the fixed points of a normalized affine iteration used by a database matching algorithm. Then, we consider questions related to PageRank, a ranking method of the web pages based on a random surfer model and used by the well known web search engine Google. In a second part, we study optimal linkage strategies for a web master who wants to maximize the average PageRank score of a web site. Finally, the third part is devoted to the study of a nonlinear variant of PageRank. The simple model that we propose takes into account the mutual influence between web ranking and web surfing.
45

The Frobenius Problem in a Free Monoid

Xu, Zhi January 2009 (has links)
Given positive integers c1,c2,...,ck with gcd(c1,c2,...,ck) = 1, the Frobenius problem (FP) is to compute the largest integer g(c1,c2,...,ck) that cannot be written as a non-negative integer linear combination of c1,c2,...,ck. The Frobenius problem in a free monoid (FPFM) is a non-commutative generalization of the Frobenius problem. Given words x1,x2,...,xk such that there are only finitely many words that cannot be written as concatenations of words in {x1,x2,...,xk}, the FPFM is to find the longest such words. Unlike the FP, where the upper bound g(c1,c2,...,ck)≤max 1≤i≤k ci2 is quadratic, the upper bound on the length of the longest words in the FPFM can be exponential in certain measures and some of the exponential upper bounds are tight. For the 2FPFM, where the given words over Σ are of only two distinct lengths m and n with 1<m<n, the length of the longest omitted words is ≤g(m, m|Σ|n-m + n - m). In Chapter 1, I give the definition of the FP in integers and summarize some of the interesting properties of the FP. In Chapter 2, I give the definition of the FPFM and discuss some general properties of the FPFM. Then I mainly focus on the 2FPFM. I discuss the 2FPFM from different points of view and present two equivalent problems, one of which is about combinatorics on words and the other is about the word graph. In Chapter 3, I discuss some variations on the FPFM and related problems, including input in other forms, bases with constant size, the case of infinite words, the case of concatenation with overlap, and the generalization of the local postage-stamp problem in a free monoid. In Chapter 4, I present the construction of some essential examples to complement the theory of the 2FPFM discussed in Chapter 2. The theory and examples of the 2FPFM are the main contribution of the thesis. In Chapter 5, I discuss the algorithms for and computational complexity of the FPFM and related problems. In the last chapter, I summarize the main results and list some open problems. Part of my work in the thesis has appeared in the papers.
46

Probabilistic Properties of Delay Differential Equations

Taylor, S. Richard January 2004 (has links)
Systems whose time evolutions are entirely deterministic can nevertheless be studied probabilistically, <em>i. e. </em> in terms of the evolution of probability distributions rather than individual trajectories. This approach is central to the dynamics of ensembles (statistical mechanics) and systems with uncertainty in the initial conditions. It is also the basis of ergodic theory--the study of probabilistic invariants of dynamical systems--which provides one framework for understanding chaotic systems whose time evolutions are erratic and for practical purposes unpredictable. Delay differential equations (DDEs) are a particular class of deterministic systems, distinguished by an explicit dependence of the dynamics on past states. DDEs arise in diverse applications including mathematics, biology and economics. A probabilistic approach to DDEs is lacking. The main problems we consider in developing such an approach are (1) to characterize the evolution of probability distributions for DDEs, <em>i. e. </em> develop an analog of the Perron-Frobenius operator; (2) to characterize invariant probability distributions for DDEs; and (3) to develop a framework for the application of ergodic theory to delay equations, with a view to a probabilistic understanding of DDEs whose time evolutions are chaotic. We develop a variety of approaches to each of these problems, employing both analytical and numerical methods. In transient chaos, a system evolves erratically during a transient period that is followed by asymptotically regular behavior. Transient chaos in delay equations has not been reported or investigated before. We find numerical evidence of transient chaos (fractal basins of attraction and long chaotic transients) in some DDEs, including the Mackey-Glass equation. Transient chaos in DDEs can be analyzed numerically using a modification of the "stagger-and-step" algorithm applied to a discretized version of the DDE.
47

The Frobenius Problem in a Free Monoid

Xu, Zhi January 2009 (has links)
Given positive integers c1,c2,...,ck with gcd(c1,c2,...,ck) = 1, the Frobenius problem (FP) is to compute the largest integer g(c1,c2,...,ck) that cannot be written as a non-negative integer linear combination of c1,c2,...,ck. The Frobenius problem in a free monoid (FPFM) is a non-commutative generalization of the Frobenius problem. Given words x1,x2,...,xk such that there are only finitely many words that cannot be written as concatenations of words in {x1,x2,...,xk}, the FPFM is to find the longest such words. Unlike the FP, where the upper bound g(c1,c2,...,ck)≤max 1≤i≤k ci2 is quadratic, the upper bound on the length of the longest words in the FPFM can be exponential in certain measures and some of the exponential upper bounds are tight. For the 2FPFM, where the given words over Σ are of only two distinct lengths m and n with 1<m<n, the length of the longest omitted words is ≤g(m, m|Σ|n-m + n - m). In Chapter 1, I give the definition of the FP in integers and summarize some of the interesting properties of the FP. In Chapter 2, I give the definition of the FPFM and discuss some general properties of the FPFM. Then I mainly focus on the 2FPFM. I discuss the 2FPFM from different points of view and present two equivalent problems, one of which is about combinatorics on words and the other is about the word graph. In Chapter 3, I discuss some variations on the FPFM and related problems, including input in other forms, bases with constant size, the case of infinite words, the case of concatenation with overlap, and the generalization of the local postage-stamp problem in a free monoid. In Chapter 4, I present the construction of some essential examples to complement the theory of the 2FPFM discussed in Chapter 2. The theory and examples of the 2FPFM are the main contribution of the thesis. In Chapter 5, I discuss the algorithms for and computational complexity of the FPFM and related problems. In the last chapter, I summarize the main results and list some open problems. Part of my work in the thesis has appeared in the papers.
48

Characterization of multi-Frobenius non-classical plane curves and construction of complete plane (N, d)-arcs

Borges Filho, Herivelto Martins 14 October 2009 (has links)
This work is composed of two independent parts, both addressing problems related to algebraic curves over finite fields. In the first part, we characterize all irreducible plane curves defined over Fq which are Frobenius non-classical for different powers of q. Such characterization gives rise to many previously unknown curves which turn out to have some interesting properties. For instance, for n [greater-than or equal to] 3 a curve which is both q- and qn-Frobenius non-classical will have its number of Fqn-rational points attaining the Stöhr-Voloch bound. In the second part, we study the arc property of several plane curves and present new complete (N, d)-arcs in PG(2, q). Some of these arcs (viewed as linear (N, 3,N - d)-codes) are just a small constant away from the Griesmer bound and for some small values of q the bound is achieved. In addition, this part also answers a question of Voloch about the arc property of a certain family of curves with many rational points, and another question of Giulietti et al about the arc property of q-Frobenius non-classical plane curves. / text
49

A unified framework for spline estimators

Schwarz, Katsiaryna 24 January 2013 (has links)
No description available.
50

COMBINATORIAL ASPECTS OF EXCEDANCES AND THE FROBENIUS COMPLEX

Clark, Eric Logan 01 January 2011 (has links)
In this dissertation we study the excedance permutation statistic. We start by extending the classical excedance statistic of the symmetric group to the affine symmetric group eSn and determine the generating function of its distribution. The proof involves enumerating lattice points in a skew version of the root polytope of type A. Next we study the excedance set statistic on the symmetric group by defining a related algebra which we call the excedance algebra. A combinatorial interpretation of expansions from this algebra is provided. The second half of this dissertation deals with the topology of the Frobenius complex, that is the order complex of a poset whose definition was motivated by the classical Frobenius problem. We determine the homotopy type of the Frobenius complex in certain cases using discrete Morse theory. We end with an enumeration of Q-factorial posets. Open questions and directions for future research are located at the end of each chapter.

Page generated in 0.0306 seconds