• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On Sharp Permutation Groups whose Point Stabilizers are Certain Frobenius Groups

Norman, Blake Addison 05 1900 (has links)
We investigate non-geometric sharp permutation groups of type {0,k} whose point stabilizers are certain Frobenius groups. We show that if a point stabilizer has a cyclic Frobenius kernel whose order is a power of a prime and Frobenius complement cyclic of prime order, then the point stabilizer is isomorphic to the symmetric group on 3 letters, and there is up to permutation isomorphism, one such permutation group. Further, we determine a significant structural description of non-geometric sharp permutation groups of type {0,k} whose point stabilizers are Frobenius groups with elementary abelian Frobenius kernel K and Frobenius complement L with |L| = |K|-1. As a result of this structural description, it is shown that the smallest non-solvable Frobenius group cannot be a point stabilizer in a non-geometric sharp permutation group of type {0,k}.
2

Fast Matrix Multiplication by Group Algebras

Li, Zimu 23 January 2018 (has links)
Based on Cohn and Umans’ group-theoretic method, we embed matrix multiplication into several group algebras, including those of cyclic groups, dihedral groups, special linear groups and Frobenius groups. We prove that SL2(Fp) and PSL2(Fp) can realize the matrix tensor ⟨p, p, p⟩, i.e. it is possible to encode p × p matrix multiplication in the group algebra of such a group. We also find the lower bound for the order of an abelian group realizing ⟨n, n, n⟩ is n3. For Frobenius groups of the form Cq Cp, where p and q are primes, we find that the smallest admissible value of q must be in the range p4/3 ≤ q ≤ p2 − 2p + 3. We also develop an algorithm to find the smallest q for a given prime p.

Page generated in 0.0661 seconds