• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Communicating multi-UAV system for cooperative SLAM-based exploration / Système multi-UAV communicant pour l'exploration coopérative basée sur le SLAM

Mahdoui Chedly, Nesrine 07 December 2018 (has links)
Dans la communauté robotique aérienne, un croissant intérêt pour les systèmes multirobot (SMR) est apparu ces dernières années. Cela a été motivé par i) les progrès technologiques, tels que de meilleures capacités de traitement à bord des robots et des performances de communication plus élevées, et ii) les résultats prometteurs du déploiement de SMR tels que l’augmentation de la zone de couverture en un minimum de temps. Le développement d’une flotte de véhicules aériens sans pilote (UAV: Unmanned Aerial Vehicle) et de véhicules aériens de petite taille (MAV: Micro Aerial Vehicle) a ouvert la voie à de nouvelles applications à grande échelle nécessitant les caractéristiques de tel système de systèmes dans des domaines tels que la sécurité, la surveillance des catastrophes et des inondations, la recherche et le sauvetage, l’inspection des infrastructures, et ainsi de suite. De telles applications nécessitent que les robots identifient leur environnement et se localisent. Ces tâches fondamentales peuvent être assurées par la mission d’exploration. Dans ce contexte, cette thèse aborde l’exploration coopérative d’un environnement inconnu en utilisant une équipe de drones avec vision intégrée. Nous avons proposé un système multi-robot où le but est de choisir des régions spécifiques de l’environnement à explorer et à cartographier simultanément par chaque robot de manière optimisée, afin de réduire le temps d’exploration et, par conséquent, la consommation d’énergie. Chaque UAV est capable d’effectuer une localisation et une cartographie simultanées (SLAM: Simultaneous Localization And Mapping) à l’aide d’un capteur visuel comme principale modalité de perception. Pour explorer les régions inconnues, les cibles – choisies parmi les points frontières situés entre les zones libres et les zones inconnues – sont assignées aux robots en considérant un compromis entre l’exploration rapide et l’obtention d’une carte détaillée. À des fins de prise de décision, les UAVs échangent habituellement une copie de leur carte locale, mais la nouveauté dans ce travail est d’échanger les points frontières de cette carte, ce qui permet d’économiser la bande passante de communication. L’un des points les plus difficiles du SMR est la communication inter-robot. Nous étudions cette partie sous les aspects topologiques et typologiques. Nous proposons également des stratégies pour faire face à l’abandon ou à l’échec de la communication. Des validations basées sur des simulations étendues et des bancs d’essai sont présentées. / In the aerial robotic community, a growing interest for Multi-Robot Systems (MRS) appeared in the last years. This is thanks to i) the technological advances, such as better onboard processing capabilities and higher communication performances, and ii) the promising results of MRS deployment, such as increased area coverage in minimum time. The development of highly efficient and affordable fleet of Unmanned Aerial Vehicles (UAVs) and Micro Aerial Vehicles (MAVs) of small size has paved the way to new large-scale applications, that demand such System of Systems (SoS) features in areas like security, disaster surveillance, inundation monitoring, search and rescue, infrastructure inspection, and so on. Such applications require the robots to identify their environment and localize themselves. These fundamental tasks can be ensured by the exploration mission. In this context, this thesis addresses the cooperative exploration of an unknown environment sensed by a team of UAVs with embedded vision. We propose a multi-robot framework where the key problem is to cooperatively choose specific regions of the environment to be simultaneously explored and mapped by each robot in an optimized manner in order to reduce exploration time and, consequently, energy consumption. Each UAV is able to performSimultaneous Localization And Mapping (SLAM) with a visual sensor as the main input sensor. To explore the unknown regions, the targets – selected from the computed frontier points lying between free and unknown areas – are assigned to robots by considering a trade-off between fast exploration and getting detailed grid maps. For the sake of decision making, UAVs usually exchange a copy of their local map; however, the novelty in this work is to exchange map frontier points instead, which allow to save communication bandwidth. One of the most challenging points in MRS is the inter-robot communication. We study this part in both topological and typological aspects. We also propose some strategies to cope with communication drop-out or failure. Validations based on extensive simulations and testbeds are presented.
2

Exploration Strategies for Robotic Vacuum Cleaners / Strategier för utforskning med robotdammsugare

Navarro Heredia, Sofia January 2018 (has links)
In this thesis, an exploration mode for the PUREi9 robotic vacuum cleaner is implemented. This exploration would provide information for optimizing the cleaning path beforehand, and would allow the robot to relocalize itself or the charger more easily in case it gets lost. Two elements are needed in order to implement an exploration mode; first, an exploration algo-rithm which will decide the next position of the robot in order to obtain useful information about the environment (unknown areas, empty spaces, obstacles...), and second, an exploration map which stores that information and is updated each time a new relevant position is reached. These elements are related and generally both are required for performing successfully the exploration of a specific environment. A frontier-based strategy is adopted for the exploration algorithm, together with occupancy grid maps. This strategy has long been regarded as a key method for autonomous robots working in unknown or changing environments. The idea of frontier-based algorithms is to divide the environ-ment into cells of regular size and drive the robot to the frontiers between cells with no obstacles and cells for which no information has been gathered. It plans one step ahead by choosing a lo-cation which provides new environment information, instead of planning in advance all locations where the robot needs to acquire new sensor information. Based on frontier strategy, two different exploration algorithms are implemented in the project. The first one is called "random frontier strategy", which chooses arbitrarily the frontier to go among the frontiers set. The second is called "closest frontier strategy", which chooses the closest frontier as the NBV (Next Best View) the robot should drive to. A path planning algorithm, based on Dijkstra’s algorithm and a node graph, has also been implemented in order to guide the robot towards the frontiers. The two methods have been compared by means of simulations in different environments. In addition, both exploration strategies have been tested on a real device. It is found that the closest frontier strategy is more efficient in terms of path length between scanning points, while both methods give a similar exploration ratio, or percentage of fully explored cells within the final map. Some additional work is required in order to improve the performance of the exploration method in the future, such as detecting unreachable frontiers, implementing a more robust path planning algorithm, or filtering the laser measurements more extensively. / I den här rapporten har vi implementerat en utforskningsmod för robotdammsugaren Pure i9. Sådan utforskning skulle ge underlag för att optimera städmönstret i förhand och låta roboten relokalisera sig själv eller laddaren om den tappar bort sig. För att implementera utforskning behövs två saker. För det första krävs en algoritm för utforsk-ning, som bestämmer nästa position för roboten, med målet att samla användbar information om omgivningen (okända eller fria områden, hinder etc.) För det andra krävs en karta som lagrar informationen och uppdateras varje gång roboten når en relevant ny position. Dessa två hänger ihop och i allmänhet krävs båda för att framgångsrikt utforska ett specifikt område. Vi har valt en front-baserad strategi för utforskningsalgoritmen, tillsammans med en rutnäts-karta med sannolikheten för hinder. Denna strategi har länge betraktats som en nyckelmetod för autonoma robotar som arbetar i okända eller föränderliga miljöer. Idén med front-baserade strate-gier är att köra roboten till fronterna mellan celler utan hinder och celler där information saknas. Den planerar ett steg framåt genom att välja en plats som ger ny information om miljön, istället för att i förväg planera alla platser där roboten behöver samla in ny sensorinformation. Baserat på front-strategi, har vi implementerat två utforskningsalgoritmer i projektet. Den första är en slumpmässig strategi, som godtyckligt väljer en front att åka till, ur hela mängden av fronter. Den andra är en närmaste fronten-strategi som väljer den närmaste fronten som den nästa bästa utsiktspunkt som roboten ska åka till. Vi har också implementerat en algoritm för banplanering, baserad på Dijkstras algoritm och en nod-graf, för att styra roboten mot fronterna. Vi har jämfört de två metoderna genom simulering i olika miljöer. Dessutom har båda utforsk-ningsstrategierna testats på en riktig enhet. Närmaste fronten-strategin är effektivare med avse-ende på banlängd mellan skanningspunkter, medan båda metoderna ger liknande utforsknings-grad, eller samma procentandel av fullt utforskade celler inom den slutliga kartan.

Page generated in 0.1248 seconds