Spelling suggestions: "subject:"ssw"" "subject:"wsw""
1 |
Caractérisation mécanique et microstructurale d’un soudage hétérogène par friction malaxage de tôles en alliage d’aluminium et de magnésium / Mechanical and Microstructural Characterization of a Dissimilar Friction Stirred Welded Aluminum-to-Magnesium Alloy SheetsDorbane, Abdelhakim 25 March 2016 (has links)
La présente étude s’inscrit dans le cadre d’un projet de recherche portant sur le soudage par friction malaxage (Friction Stir Welding, FSW) d’une configuration bimétallique d’un alliage d’Aluminium 6061-T6 (Al) et d’un alliage de Magnésium AZ31B (Mg). Le but de cette investigation est d’optimiser les paramètres de soudage FSW pour l’amélioration des propriétés mécaniques des structures soudées. Le travail préliminaire a ciblé la détermination des propriétés microstructurales et mécaniques des deux matériaux de base utilisés. A ce niveau, l’influence de la température et de la vitesse de déformation a été analysée via des essais de traction monotone. Une étude paramétrique a permis un couplage entre le procédé de soudage FSW et la qualité des joints soudés en termes de microstructure et de propriétés mécaniques. Ainsi, les La morphologie des joints soudés a été mise en évidence en vue de mieux comprendre le flux de matière lors du procédé FSW d’un multi matériau. De plus, des observations fines microstructurales ont permis de mettre en évidence les évolutions de la taille des grains, de la micro dureté et de la texture des différentes zones définissant un joint soudé. Une analyse micrographique des faciès de rupture, réalisée à l’aide d’un microscope électronique à balayage (MEB), a contribué à mieux cerner les mécanismes d’endommagement. / This study is part of a research project initiated by Texas A&M University in Qatar and the American University of Beirut on characterizing the mechanical and microstructural properties of friction sit welded bimetallic joints. The current researched work focused on two of the materials proposed in the initial project, namely, the 6061-T6 aluminum alloy (Al) and an AZ31B magnesium alloy (Mg). Therefore, the purpose of this investigation is to optimize the friction stir welding parameters of similar and dissimilar materials in the aim to improve the mechanical properties of welded structures. The preliminary work focused on the investigation of the microstructural and mechanical properties of the two studied base materials. In what followed, the properties of the welded parts were studied by analyzing the influence of the temperature and the strain rate via monotonous tensile tests and by analyzing the microstructural and textural properties.
|
2 |
Stress Analysis of Specimen and Machine of Friction Stir WeldingLi, Yi-Feng 06 September 2005 (has links)
FSW is a new welding technology developed in 1991, but up till now, the study on FSW is mainly focus on the residual stress, micro-structure and thermal effect of specimen etc. However, the stresses of the machine platform have not discussed yet. This research of the stresses of the machine, and the results can be used to design the machine platform of the FSW for micro specimen in the future.
The governing equilibrium equation of machine platform under the load was set up in the beginning. Then the equation was solved by using the MATLAB software. The main influence ranges of deflections of the specimen and of the machine platform was obtained and discussed.
|
3 |
Friction Stir Welding Between Similar and Dissimilar MaterialsAli, Khaled Yousif January 2017 (has links)
No description available.
|
4 |
Dissimilar Friction Stir Welding Between Magnesium and Aluminum AlloysReese, Gregory A 12 1900 (has links)
Joining two dissimilar metals, specifically Mg and Al alloys, using conventional welding techniques is extraordinarily challenging. Even when these alloys are able to be joined, the weld is littered with defects such as cracks, cavities, and wormholes. The focus of this project was to use friction stir welding to create a defect-free joint between Al 2139 and Mg WE43. The stir tool used in this project, made of H13 tool steel, is of fixed design. The design included an 11 mm scrolled and concave shoulder in addition to a 6 mm length pin comprised of two tapering, threaded re-entrant flutes that promoted and amplified material flow. Upon completion of this project an improved experimental setup process was created as well as successful welds between the two alloys. These successful joints, albeit containing defects, lead to the conclusion that the tool used in project was ill fit to join the Al and Mg alloy plates. This was primarily due to its conical shaped pin instead of the more traditional cylindrical shaped pins. As a result of this aggressive pin design, there was a lack of heat generation towards the bottom of the pin even at higher (800-1000 rpm) rotation speeds. This lack of heat generation prohibited the material from reaching plastic deformation thus preventing the needed material flow to form the defect free joint.
|
5 |
Étude des couplages thermomécaniques et microstructuraux d’un alliage de titane au cours du soudage FSW / Study of thermomechanical and microstructural couplings of a titanium alloys during Friction Stir WeldingTchein, Gnofam Jacques 11 December 2018 (has links)
Le soudage FSW (Friction Stir Welding) est un procédé de soudage à l’état solide appliqué aujourd’hui dans les secteurs des transports aérospatial, naval et ferroviaire. Il présente l’avantage de fournir des soudures aux propriétés mécaniques meilleures que celles des procédés de soudage par fusion de la matière. La plupart des études menées sur ce procédé concernent les alliages d’aluminium. Ce travail porte sur l’étude des phénomènes thermomécaniques et métallurgiques pendant le procédé de soudage FSW du TA6V. L’influence de la microstructure initiale sur les propriétés mécaniques et la microstructure finale est étudiée à travers une étude expérimentale. La ZAT et la ZATM des soudures ont une très faible épaisseur et les soudures ne présentent pas de zone de fragilité. La genèse de la microstructure pendant le soudage a été identifiée et s’articule en trois points: changement de phase α → β, recristallisation dynamique continue de la phase β, formation de grains α à l’intérieur des grains β recristallisés. Afin de mettre en place un modèle permettant de prédire la microstructure dans le noyau de la soudure, des essais de torsion à chaud ont été réalisés pour déterminer les propriétés rhéologiques du TA6V. Ces essais ont aussi permis de mettre en place une loi de comportement analytique du TA6V. Les champs de vitesse sont formulés analytiquement à partir des équations de la mécanique des fluides et les champs thermiques sont déterminés numériquement à partir d’une formulation eulérienne. / Friction Stir Welding (FSW) is a solid state welding process used today in the aerospace, naval and rail transport sectors. It has the advantage of providing welds with better mechanical properties than fusion welding processes. Most of studies carried out on this process concern aluminum alloys. This work focuses on the study of thermomechanical and metallurgical phenomena during FSW of the Ti-6Al-4V alloy. The influence of the initial microstructure on the mechanical properties and the final microstructure is studied through an experimental study. The HAZ and TMAZ of the welds are very thin and the welds didn’t present any weak zone. The genesis of the microstructure during the process has been identified and is made up with three main steps: α → β phase change, continuous dynamic recrystallization of the β phase and formation of α grains within the recrystallized β grains. In order to set up a model to predict the microstructure in the weld nugget, hot torsion tests were performed to determine the rheological properties of TA6V. These tests also made it possible to set up an analytical behavior law of Ti-6Al-4V. The velocity fields during FSW are formulated analytically from the equations of fluid mechanics and thermal fields are determined numerically from a eulerian formulation.
|
6 |
Next Generation Friction Stir Welding Tools for High Temperature MaterialsGaddam, Supreeth 07 1900 (has links)
The historical success of friction stir welding (FSW) on materials such as aluminum and magnesium alloys is associated with the absence of melting and solidification during the solid-state process. However, commercial adoption of FSW on steels and other non-ferrous high-strength, high-temperature materials such as nickel-base and titanium-base alloys is limited due to the high costs associated with the process. In this dissertation, the feasibility of using an FSW approach to fabricate certain structural components made of nitrogen containing austenitic stainless steels that go into the vacuum vessel and magnetic systems of tokamak devices was demonstrated. The FSW weldments possessed superior application-specific mechanical and functional properties when compared to fusion weldments reported in the technical literature. However, as stated earlier, the industrial adoption of FSW on high temperature materials such as the ferrous alloys used in the present study is greatly limited due to the high costs associated with the process. The cost is mainly dictated by the high temperature FSW tools used to accomplish the weldments. Commercially available high temperature FSW tools are exorbitantly priced and often have short lifetimes. To overcome the high-cost barrier, we have explored the use of integrated computational materials engineering (ICME) combined with experimental prototyping validation to design next-generation tool materials with high performance and relatively low cost. Cermet compositions with either tungsten carbide or niobium carbide as the hard phase bonded by high entropy alloy binders were processed via mechanical alloying and spark plasma sintering. The feasibility and effectiveness of the newly developed cermet tool materials as potential next generation high temperature FSW tool materials was evaluated.
|
7 |
Investigation of Heterogeneity of FSW Inconel 718 Coupled with Welding Thermal CycleHuang, Dong Fang 07 December 2008 (has links) (PDF)
In order to develop a better understanding of the property, microstructure evolution and thermal history of FSW Inconel 718's, the strain, strain rate and thermal cycles need to be determined. In order to estimate the strain field of a deformed body, a displacement function needs to be determined. A 3D deformation model was developed to determine the displacement coefficients. A rectangular box created in this model deforms following a linear displacement function. Three orthogonal planes cut this deformed box, which leads to three deformed planes. The shape parameters (L, H, θ¹ and θ²) on the three orthogonal planes can be expressed as the functions of displacement coefficients. Although the displacement coefficients can not be expressed in the forms of the shape parameters symbolically, a numerical solution can be found using numerical optimization methods. The shape parameters were obtained by assuming the displacement coefficients (three cases). Then, the numerical optimization was carried out to determine the displacement coefficients. The solved displacement coefficients are the same as the assumed ones, which shows that this inverse problem can be solved, and this model is robust to determine the displacement function numerically. This model was used to estimate the strain and strain rate at the boundary of the nugget zone of Friction Stir Welding (FSW) Inconel 718. A numerical/experimental methodology was developed to estimate the thermal history in the stir zone of FSW Inconel 718.The thermocouple experiment was conducted to measure the thermal cycles in Heat Affected Zone (HAZ). Using the measured temperature in HAZ and a numerical model, the peak temperature (1039 ºC) and cooling rate (58.18 ºC/s) were determined. The microstructure in different regions was characterized and co-related with the thermal cycles. In order to understand the microstructure evolution in the stir zone, the strain rate (12.612 s-1) was estimated using the mathematical model as mentioned above. According to the estimated thermal history and strain rate, the assumption that the dynamic recrystallizaiton occurred during FSW was made. The grain size in the nugget zone affects the hardness. The relationship among the microstructure, mechanical properties, and thermal cycles was discussed.
|
8 |
Modelamiento acoplado térmico y de deformación en soldadura por fricción-agitaciónVergara Mesina, Benjamín January 2017 (has links)
Ingeniero Civil Mecánico / La presente memoria tiene como objetivo el corroborar, reformular y combinar
ecuaciones asintóticas para obtener expresiones explícitas útiles para la soldadura por
fricción-agitación (FSW). Para ello se crea una base de datos y se rede ne el modelo
asintótico asociado a esta, para plantear ecuaciones fundamentales y corroborar las
diferentes aproximaciones que las de nen, además de agregarles factores de corrección.
La FSW aprovecha el calor generado por el roce entre las placas a soldar y la
herramienta giratoria usada, para generar la unión entre los metales. Su ventaja es que
se obtienen mejores propiedades mecánicas y por lo mismo, está siendo ampliamente
utilizada; pero dado que se estudia por ensayo y error, es necesario que se desarrolle
mayor conocimiento teórico sobre ella. Por ello, varios investigadores han desarrollado
modelos para representar los fenómenos que gobiernan esta soldadura y en el caso de
esta tesis, se utiliza el método de escalamiento adimensional.
Se observa que las aproximaciones presentan variaciones menores al 12% por lo que
son aceptables, excepto para el caso de Zener-Hollomon en que es necesario estudiar la
tasa de deformación usada. Por otro lado, los factores de corrección en general presentan
valores menores a 4, lo que se considera satisfactorio para el nivel de aproximación y
resultados trabajados. Además, no se puede de finir un solo epsilon para AA5059 y AA7075,
por lo que se debe estudiar más materiales, pero sí se concluye que se logran modelar
los fenómenos asociados a esta soldadura, con resultados útiles para la ciencia. / Este trabajo ha sido parcialmente financiado por el Gobierno Canadiense a través de la Beca "Emerging Leaders in the Americas Program"
|
9 |
A New Method of Measuring Flow Stress for Improved Modeling of Friction Stir WeldingPrymak, David John 17 June 2021 (has links)
Deficiencies in friction stir welding (FSW) numerical modelling are identified. Applicability of flow stress data derived from hot compression, hot torsion, and split Hopkinson bar testing methods is assessed. A new method of measuring flow stresses in the stir zone of a friction stir welding tool is developed. This test utilizes a non-consumable flat-faced cylindrical tool of different geometries that induces a vertical and rotational load on the material of interest. A constant vertical load and rpm value is used for each test yielding the resulting motor torque and temperature generation to define the material response. Experimental samples are cross-sectioned, polished, and etched to reveal the material flow behavior below the tool. A viscosity-based model is used to quantify the shear stress and rim shear rate present in the shear layer below the tool. This test is referred to as the high-pressure shear (HPS) experiment. A parameter window is developed for two alloys of interest, AA6061-T6 and AA2219-T87 and results are reported. The HPS experiments yields flow stress estimates that are pressure and strain rate dependent. Different tool geometries are explored to understand the impact of the "dead zone"at the center axis of the tool. When compared to hot compression and hot torsion the HPS flow stress datasets trend 20-86 % lower across the two materials tested.
|
10 |
Characterization of Friction at the Tool/Material Interface in Friction Stir WeldingRamos Gonzales, Bryan Gonzalo 18 December 2023 (has links) (PDF)
Friction Stir Welding (FSW) process development is very costly, and it is still experimental. A predictive model would optimize the weld by changing parameters and obtaining results that reflect the physical process. Friction is the primary adjustable parameter in FSW modeling. Currently, friction model selection is not physic-based. It is based on what is available and contributes to the best fit between the model and experimental data. The research objective is to characterize the interface tool/base material by studying the effect of tool friction coefficient and thermal properties. This is accomplished by changing welding parameters such as force, rpm, and temperature and studying the effects on dependent variables that contribute to the shear stress produced by friction. The study's findings challenge traditional friction concepts by revealing how the rapid engagement of a tool with the base material significantly reduces the impact of sliding friction. Instead, the observed friction primarily depends on the resistance of the shear layer to the tool's motion. This resistance, in turn, is chiefly influenced by the interface temperature, a factor strongly impacted by the thermal diffusivity of the tool material. Remarkably, thermal diffusivity holds the most influence (49.3%) on interface temperature. The interface of the tool material is characterized by a shear stress equation integrating pressure, RPM, thermal diffusivity, and interface temperature. Additionally, the investigation highlights the critical role of heat extraction, where materials with higher thermal diffusivity exhibit distinct outcomes: heightened torque, reduced surface temperature, minimized layer volumes, and shorter operation times.
|
Page generated in 0.0828 seconds