• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulating the Influence of Injection Timing, Premixed Ratio, and Inlet Temperature on Natural Gas / Diesel Dual-Fuel HCCI Combustion in a Diesel Engine

Ghomashi, Hossein, Olley, Peter, Mason, Byron A., Ebrahimi, Kambiz M. 01 1900 (has links)
Yes / Dual-fuel HCCI engines allow a relatively small quantity of diesel fuel to be used to ignite a variety of fuels such as natural gas or methane in HCCI mode. The gaseous fuel is mixed with the incoming air, and diesel fuel is sprayed into the cylinder by direct injection. Mathematical modelling is used to investigate the effects of parameters such as premixed ratio (fuel ratio) and pilot fuel injection timing on combustion of a dual-fuel HCCI engines. A CFD package is used with AVL FIRE software to simulate dual-fuel HCCI combustion in detail. The results establish a suitable range of premixed ratio and liquid fuel injection timing for low levels of NOx, CO and HC emissions along with a reliable and efficient combustion. Dual-fuel HCCI mode can increase NOx emission with lower premixed ratios in comparison to normal HCCI engines, but it is shown that the NOx emission reduces above a certain level of the premixed ratio. Due to the requirement of homogenous mixing of liquid fuel with air, the liquid fuel injection is earlier than for diesel engines. It is shown that, with careful control of parameters, dual-fuel HCCI engines have lower emissions in comparison with conventional engines.
2

Aufladung von Pkw DI - Ottomotoren mit Abgasturboladern mit variabler Turbinengeometrie

Schmalzl, Hans-Peter 21 October 2006 (has links) (PDF)
Das Konzept „Downsizing“ für Otto- und Dieselmotoren zur Verbesserung von Kraftstoffverbrauch und Schadstoffemission ist inzwischen durch viele praktische Beispiele und theoretische Untersuchungen zweifelsfrei bestätigt worden. Da „Downsizing“ aber untrennbar mit der Aufladung verbunden ist, wächst der Bedarf nach Aufladetechnologien, die das Hauptmanko des „Downsizing“ – das mangelhafte Drehmoment bei niedriger Motordrehzahl – überwinden. Mit zunehmender spezifischer Leistung und damit höheren Aufladegraden tritt diese Problematik immer stärker in den Vordergrund. Vor diesem Hintergrund hat sich für den Pkw-Dieselmotor die Aufladung mit VTG durchgesetzt. Beim Ottomotor wurde bislang der Schritt vom einfacheren Wastegate-Lader zur VTG noch nicht unternommen. Die Gründe dafür sind insbesondere in der höheren thermischen Belastung, aufgrund der höheren Abgastemperatur, und der größeren Luftdurchsatzspanne zu finden. Andererseits besteht inzwischen speziell beim Ottomotor ein großer Bedarf bezüglich der Verbesserung des Kraftstoffverbrauches und der Fahrdynamik in Kombination mit der Turboaufladung. Vor dem Hintergrund der in den letzten Jahren durchgeführten Weiterentwicklungen auf dem Gebiet der Benzindirekteinspritzung und der Aufladetechnik, stellt sich inzwischen verstärkt die Frage, ob durch den Einsatz einer VTG am Ottomotor ähnlich große Verbrauchseinsparungen und Verbesserungen in der Fahrdynamik erzielt werden können, wie dies vor einigen Jahren beim Pkw-Dieselmotor der Fall war. Im Rahmen der durchgeführten Arbeit wurden die Potentiale einer VTG an einem direkteinspritzenden Ottomotor eingehend durch Experimente und Motorprozesssimulation untersucht. Bei der direkten Übertragung der heute üblichen Diesel-VTG-Technik auf die Anwendung am Ottomotor können allerdings nur unwesentliche Verbesserungen beim spezifischen Kraftstoffverbrauch erzielt werden. Um die volle Drehzahlspanne des Ottomotors in seiner Basisabstimmung bedienen zu können, muss der Verstellbereich der VTG extrem ausgereizt werden, was Wirkungsgradnachteile mit sich bringt. Mit dem Übergang auf ein 2-flutiges Zwillingsstromturbinengehäuse in Kombination mit VTG wird es möglich, den Gaswechsel des Motors zu verbessern, da der Auslassvorgang der einzelnen Zylinder weniger durch die anderen Zylinder behindert wird. Der Effekt ist allerdings wesentlich schwächer ausgeprägt als bei einem 2-flutigen Wastegate Lader, da hier die Flutentrennung bis kurz vor das Turbinenrad erfolgen kann. Bei der VTG-Zwillingsstromturbine endet die Trennung konstruktionsbedingt bereits vor dem Leitgitter. Im Bereich des beschaufelten Ringkanales treffen die beiden bis dorthin getrennten Abgasstränge aufeinander und beeinflussen sich hier wieder gegenseitig, wobei die negativen Auswirkungen geringer sind als bei einer 1-flutigen Turbine, ganz ohne Trennung im Turbinengehäuse. Die bessere Nutzung der kinetischen Energie aus dem Vorauslassstoß, die bei Stoßaufladung mit getrennt geführten Abgaskanälen üblicherweise möglich ist, kann allerdings bei einer VTG-Turbine nicht erreicht werden. Speziell im unteren Motordrehzahlbereich, wo die Leitschaufeln weit geschlossen sind, werden die Druckpulsationen stark gedämpft und haben somit nur noch einen geringen Anteil an der Totalenthalpie des Abgases. Wie sich aus den Untersuchungen zeigte, kann dieser Nachteil der VTG aber durch den kleineren Turbinendurchsatz bei kleiner Schaufelstellung überkompensiert werden, wodurch das Drehmoment bei niedrigen Motordrehzahlen angehoben werden kann. Eine wesentlich bessere Flutentrennung kann durch die Verwendung einer VTG-Doppelstromturbine erreicht werden. Durch zwei über den Turbinenumfang getrennt geführte Spiralkanäle können die Überströmquerschnitte verkleinert, und damit die gegenseitige Beeinflussung der Abgasströme wesentlich verringert werden. Die Verhältnisse sind in dieser Ausführung vergleichbar mit Wastegate- Zwillingsstromturbinen, was die Effektivität der Flutentrennung anbelangt. Das volle Potential dieser optimierten Flutentrennung kann durch eine geänderte Applikation der Nockenwellenverstellungen im Motorkennfeld ausgeschöpft werden. Es ist damit möglich, längere Ventilüberschneidungen im unteren Motordrehzahlbereich zu realisieren und damit den Spülluftanteil in diesem Kennfeldbereich wesentlich zu steigern. Diese Maßnahme hat einen sehr positiven Einfluss auf die Motorbetriebswerte aufgrund: • Verringerter Klopfempfindlichkeit durch Reduktion des Restgasanteiles. • Absenkung der mittleren Abgastemperatur vor Turbine und damit der Möglichkeit, das Verbrennungsluftverhältnis anzuheben. • Verringerung der notwendigen Durchsatzspanne für Verdichter und Turbine und damit der Möglichkeit den Lader bei besseren Wirkungsgraden zu betreiben. Aufgrund des mit der Doppelstromanordnung begrenzten Zuströmquerschnittes über den Umfang der Turbine (180° pro Turbinenstrang) stellt sich allerdings ein geringerer Maximaldurchsatz für die Turbine ein. Die Simulationsergebnisse haben gezeigt, dass dadurch der mittlere Abgasdruck vor Turbine im oberen Volllastdrehzahlbereich ansteigt. Um dies zu verhindern, kann die Doppelstromturbine mit einer so genannten Stau–Stoß–Umschaltung versehen werden, mit der die beiden Turbinenstränge bei hohen Motordrehzahlen verbunden werden. Bei geöffnetem Umschaltventil kann sich das Abgas auf beide Turbinenstränge verteilen, und die Pulsation wird zusätzlich reduziert. Beide Effekte bewirken ein Absinken der Turbinenleistung und damit die gewünschte Begrenzung des Ladedruckes. Gleichzeitig ist es auch möglich, das Stoß–Stau–Umschaltventil als zusätzliches Wastegate zu betreiben, wodurch der Durchsatzbereich der Turbine noch weiter gesteigert werden kann. Die Kombination der geschilderten Maßnahmen: • VTG mit Doppelstromturbine • Stoß-Stau-Umschaltung • Vergrößerte Ventilüberschneidung hat bei den durchgeführten Untersuchungen zu einer Steigerung des stationären Volllastdrehmomentes von 40 % bei nM = 1500 1/min geführt, bei gleichzeitiger Verbesserung des Spüldruckgefälles um ca. 400 mbar im Nennleistungspunkt gegenüber dem 1-flutigen Wastegate-Basislader. Im Instationärbetrieb konnte am Beispiel eines Lastsprunges bei nM = 1800 1/min eine Verkürzung der Zeit bis zum Erreichen von 90 % des Nennmomentes um ca. 50 % festgestellt werden. Obgleich auf Basis der untersuchten Varianten bezüglich der aerodynamischen Auslegung der Einzelkomponenten, der Regelbarkeit der VTG und der mechanischen Haltbarkeit noch weitere Entwicklungsaktivitäten notwendig sein werden, kann aufgrund der sehr positiven Untersuchungsergebnisse von einem großen Potential für die Aufladung von DI-Ottomotoren mit variabler Turbinengeometrie ausgegangen werden.
3

Aufladung von Pkw DI - Ottomotoren mit Abgasturboladern mit variabler Turbinengeometrie

Schmalzl, Hans-Peter 26 June 2006 (has links)
Das Konzept „Downsizing“ für Otto- und Dieselmotoren zur Verbesserung von Kraftstoffverbrauch und Schadstoffemission ist inzwischen durch viele praktische Beispiele und theoretische Untersuchungen zweifelsfrei bestätigt worden. Da „Downsizing“ aber untrennbar mit der Aufladung verbunden ist, wächst der Bedarf nach Aufladetechnologien, die das Hauptmanko des „Downsizing“ – das mangelhafte Drehmoment bei niedriger Motordrehzahl – überwinden. Mit zunehmender spezifischer Leistung und damit höheren Aufladegraden tritt diese Problematik immer stärker in den Vordergrund. Vor diesem Hintergrund hat sich für den Pkw-Dieselmotor die Aufladung mit VTG durchgesetzt. Beim Ottomotor wurde bislang der Schritt vom einfacheren Wastegate-Lader zur VTG noch nicht unternommen. Die Gründe dafür sind insbesondere in der höheren thermischen Belastung, aufgrund der höheren Abgastemperatur, und der größeren Luftdurchsatzspanne zu finden. Andererseits besteht inzwischen speziell beim Ottomotor ein großer Bedarf bezüglich der Verbesserung des Kraftstoffverbrauches und der Fahrdynamik in Kombination mit der Turboaufladung. Vor dem Hintergrund der in den letzten Jahren durchgeführten Weiterentwicklungen auf dem Gebiet der Benzindirekteinspritzung und der Aufladetechnik, stellt sich inzwischen verstärkt die Frage, ob durch den Einsatz einer VTG am Ottomotor ähnlich große Verbrauchseinsparungen und Verbesserungen in der Fahrdynamik erzielt werden können, wie dies vor einigen Jahren beim Pkw-Dieselmotor der Fall war. Im Rahmen der durchgeführten Arbeit wurden die Potentiale einer VTG an einem direkteinspritzenden Ottomotor eingehend durch Experimente und Motorprozesssimulation untersucht. Bei der direkten Übertragung der heute üblichen Diesel-VTG-Technik auf die Anwendung am Ottomotor können allerdings nur unwesentliche Verbesserungen beim spezifischen Kraftstoffverbrauch erzielt werden. Um die volle Drehzahlspanne des Ottomotors in seiner Basisabstimmung bedienen zu können, muss der Verstellbereich der VTG extrem ausgereizt werden, was Wirkungsgradnachteile mit sich bringt. Mit dem Übergang auf ein 2-flutiges Zwillingsstromturbinengehäuse in Kombination mit VTG wird es möglich, den Gaswechsel des Motors zu verbessern, da der Auslassvorgang der einzelnen Zylinder weniger durch die anderen Zylinder behindert wird. Der Effekt ist allerdings wesentlich schwächer ausgeprägt als bei einem 2-flutigen Wastegate Lader, da hier die Flutentrennung bis kurz vor das Turbinenrad erfolgen kann. Bei der VTG-Zwillingsstromturbine endet die Trennung konstruktionsbedingt bereits vor dem Leitgitter. Im Bereich des beschaufelten Ringkanales treffen die beiden bis dorthin getrennten Abgasstränge aufeinander und beeinflussen sich hier wieder gegenseitig, wobei die negativen Auswirkungen geringer sind als bei einer 1-flutigen Turbine, ganz ohne Trennung im Turbinengehäuse. Die bessere Nutzung der kinetischen Energie aus dem Vorauslassstoß, die bei Stoßaufladung mit getrennt geführten Abgaskanälen üblicherweise möglich ist, kann allerdings bei einer VTG-Turbine nicht erreicht werden. Speziell im unteren Motordrehzahlbereich, wo die Leitschaufeln weit geschlossen sind, werden die Druckpulsationen stark gedämpft und haben somit nur noch einen geringen Anteil an der Totalenthalpie des Abgases. Wie sich aus den Untersuchungen zeigte, kann dieser Nachteil der VTG aber durch den kleineren Turbinendurchsatz bei kleiner Schaufelstellung überkompensiert werden, wodurch das Drehmoment bei niedrigen Motordrehzahlen angehoben werden kann. Eine wesentlich bessere Flutentrennung kann durch die Verwendung einer VTG-Doppelstromturbine erreicht werden. Durch zwei über den Turbinenumfang getrennt geführte Spiralkanäle können die Überströmquerschnitte verkleinert, und damit die gegenseitige Beeinflussung der Abgasströme wesentlich verringert werden. Die Verhältnisse sind in dieser Ausführung vergleichbar mit Wastegate- Zwillingsstromturbinen, was die Effektivität der Flutentrennung anbelangt. Das volle Potential dieser optimierten Flutentrennung kann durch eine geänderte Applikation der Nockenwellenverstellungen im Motorkennfeld ausgeschöpft werden. Es ist damit möglich, längere Ventilüberschneidungen im unteren Motordrehzahlbereich zu realisieren und damit den Spülluftanteil in diesem Kennfeldbereich wesentlich zu steigern. Diese Maßnahme hat einen sehr positiven Einfluss auf die Motorbetriebswerte aufgrund: • Verringerter Klopfempfindlichkeit durch Reduktion des Restgasanteiles. • Absenkung der mittleren Abgastemperatur vor Turbine und damit der Möglichkeit, das Verbrennungsluftverhältnis anzuheben. • Verringerung der notwendigen Durchsatzspanne für Verdichter und Turbine und damit der Möglichkeit den Lader bei besseren Wirkungsgraden zu betreiben. Aufgrund des mit der Doppelstromanordnung begrenzten Zuströmquerschnittes über den Umfang der Turbine (180° pro Turbinenstrang) stellt sich allerdings ein geringerer Maximaldurchsatz für die Turbine ein. Die Simulationsergebnisse haben gezeigt, dass dadurch der mittlere Abgasdruck vor Turbine im oberen Volllastdrehzahlbereich ansteigt. Um dies zu verhindern, kann die Doppelstromturbine mit einer so genannten Stau–Stoß–Umschaltung versehen werden, mit der die beiden Turbinenstränge bei hohen Motordrehzahlen verbunden werden. Bei geöffnetem Umschaltventil kann sich das Abgas auf beide Turbinenstränge verteilen, und die Pulsation wird zusätzlich reduziert. Beide Effekte bewirken ein Absinken der Turbinenleistung und damit die gewünschte Begrenzung des Ladedruckes. Gleichzeitig ist es auch möglich, das Stoß–Stau–Umschaltventil als zusätzliches Wastegate zu betreiben, wodurch der Durchsatzbereich der Turbine noch weiter gesteigert werden kann. Die Kombination der geschilderten Maßnahmen: • VTG mit Doppelstromturbine • Stoß-Stau-Umschaltung • Vergrößerte Ventilüberschneidung hat bei den durchgeführten Untersuchungen zu einer Steigerung des stationären Volllastdrehmomentes von 40 % bei nM = 1500 1/min geführt, bei gleichzeitiger Verbesserung des Spüldruckgefälles um ca. 400 mbar im Nennleistungspunkt gegenüber dem 1-flutigen Wastegate-Basislader. Im Instationärbetrieb konnte am Beispiel eines Lastsprunges bei nM = 1800 1/min eine Verkürzung der Zeit bis zum Erreichen von 90 % des Nennmomentes um ca. 50 % festgestellt werden. Obgleich auf Basis der untersuchten Varianten bezüglich der aerodynamischen Auslegung der Einzelkomponenten, der Regelbarkeit der VTG und der mechanischen Haltbarkeit noch weitere Entwicklungsaktivitäten notwendig sein werden, kann aufgrund der sehr positiven Untersuchungsergebnisse von einem großen Potential für die Aufladung von DI-Ottomotoren mit variabler Turbinengeometrie ausgegangen werden.
4

Combustion modeling for virtual SI engine calibration with the help of 0D/3D methods / Verbrennungsmodellierung für die virtuelle Applikation von Ottomotoren unter Verwendung von 0D- und 3D-Methoden

Grasreiner, Sebastian 26 July 2012 (has links) (PDF)
Spark ignited engines are still important for conventional as well as for hybrid power trains and are thus objective to optimization. Today a lot of functionalities arise from software solutions, which have to be calibrated. Modern engine technologies provide an extensive variability considering their valve train, fuel injection and load control. Thus, calibration efforts are really high and shall be reduced by introduction of virtual methods. In this work a physical 0D combustion model is set up, which can cope with a new generation of spark ignition engines. Therefore, at first cylinder thermodynamics are modeled and validated in the whole engine map with the help of a real-time capable approach. Afterwards an up to date turbulence model is introduced, which is based on a quasi-dimensional k-epsilon-approach and can cope with turbulence production from large scale shearing. A simplified model for ignition delay is implemented which emphasizes the transfer from laminar to turbulent flame propagation after ignition. The modeling is completed with the calculation of overall heat release rates in a 0D entrainment approach with the help of turbulent flame velocities. After validation of all sub-models, the 0D combustion prediction is used in combination with a 1D gas exchange analysis to virtually calibrate the modern engine torque structure and the ECU function for exhaust gas temperature with extensive simulations. / Moderne Ottomotoren spielen heute sowohl in konventionellen als auch hybriden Fahrzeugantrieben eine große Rolle. Aktuelle Konzepte sind hochvariabel bezüglich Ventilsteuerung, Kraftstoffeinspritzung und Laststeuerung und ihre Optimierungspotentiale erwachsen zumeist aus neuen Softwarefunktionen. Deren Applikation ist zeit- und kostenintensiv und soll durch virtuelle Methoden unterstützt werden. In der vorliegenden Arbeit wird ein physikalisches 0D Verbrennungsmodell für Ottomotoren aufgebaut und bis zur praktischen Anwendung geführt. Dafür wurde zuerst die Thermodynamik echtzeitfähig modelliert und im gesamten Motorenkennfeld abgeglichen. Der Aufbau eines neuen Turbulenzmodells auf Basis der quasidimensionalen k-epsilon-Gleichung ermöglicht anschließend, die veränderlichen Einflüsse globaler Ladungsbewegung auf die Turbulenz abzubilden. Für den Brennverzug wurde ein vereinfachtes Modell abgeleitet, welches den Übergang von laminarer zu turbulenter Flammenausbreitung nach der Zündung in den Vordergrund stellt. Der restliche Brennverlauf wird durch die physikalische Ermittlung der turbulenten Brenngeschwindigkeit in einem 0D Entrainment-Ansatz dargestellt. Nach Validierung aller Teilmodelle erfolgt die virtuelle Bedatung der Momentenstruktur und der Abgastemperaturfunktion für das Motorsteuergerät.
5

Combustion modeling for virtual SI engine calibration with the help of 0D/3D methods

Grasreiner, Sebastian 06 July 2012 (has links)
Spark ignited engines are still important for conventional as well as for hybrid power trains and are thus objective to optimization. Today a lot of functionalities arise from software solutions, which have to be calibrated. Modern engine technologies provide an extensive variability considering their valve train, fuel injection and load control. Thus, calibration efforts are really high and shall be reduced by introduction of virtual methods. In this work a physical 0D combustion model is set up, which can cope with a new generation of spark ignition engines. Therefore, at first cylinder thermodynamics are modeled and validated in the whole engine map with the help of a real-time capable approach. Afterwards an up to date turbulence model is introduced, which is based on a quasi-dimensional k-epsilon-approach and can cope with turbulence production from large scale shearing. A simplified model for ignition delay is implemented which emphasizes the transfer from laminar to turbulent flame propagation after ignition. The modeling is completed with the calculation of overall heat release rates in a 0D entrainment approach with the help of turbulent flame velocities. After validation of all sub-models, the 0D combustion prediction is used in combination with a 1D gas exchange analysis to virtually calibrate the modern engine torque structure and the ECU function for exhaust gas temperature with extensive simulations.:Contents 1 Introduction. 2 Thermodynamic modeling with real-time capability. 3 Quasi-dimensional modeling of turbulence and global charge motion. 4 Physical modeling of ignition delay. 5 Combustion modeling based on a 0D entrainment approach. 6 Virtual engine calibration with a quasi-dimensional combustion model. 7 Summary and outlook. / Moderne Ottomotoren spielen heute sowohl in konventionellen als auch hybriden Fahrzeugantrieben eine große Rolle. Aktuelle Konzepte sind hochvariabel bezüglich Ventilsteuerung, Kraftstoffeinspritzung und Laststeuerung und ihre Optimierungspotentiale erwachsen zumeist aus neuen Softwarefunktionen. Deren Applikation ist zeit- und kostenintensiv und soll durch virtuelle Methoden unterstützt werden. In der vorliegenden Arbeit wird ein physikalisches 0D Verbrennungsmodell für Ottomotoren aufgebaut und bis zur praktischen Anwendung geführt. Dafür wurde zuerst die Thermodynamik echtzeitfähig modelliert und im gesamten Motorenkennfeld abgeglichen. Der Aufbau eines neuen Turbulenzmodells auf Basis der quasidimensionalen k-epsilon-Gleichung ermöglicht anschließend, die veränderlichen Einflüsse globaler Ladungsbewegung auf die Turbulenz abzubilden. Für den Brennverzug wurde ein vereinfachtes Modell abgeleitet, welches den Übergang von laminarer zu turbulenter Flammenausbreitung nach der Zündung in den Vordergrund stellt. Der restliche Brennverlauf wird durch die physikalische Ermittlung der turbulenten Brenngeschwindigkeit in einem 0D Entrainment-Ansatz dargestellt. Nach Validierung aller Teilmodelle erfolgt die virtuelle Bedatung der Momentenstruktur und der Abgastemperaturfunktion für das Motorsteuergerät.:Contents 1 Introduction. 2 Thermodynamic modeling with real-time capability. 3 Quasi-dimensional modeling of turbulence and global charge motion. 4 Physical modeling of ignition delay. 5 Combustion modeling based on a 0D entrainment approach. 6 Virtual engine calibration with a quasi-dimensional combustion model. 7 Summary and outlook.

Page generated in 0.0979 seconds