• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 551
  • 142
  • 61
  • 43
  • 24
  • 12
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 1240
  • 1240
  • 314
  • 304
  • 200
  • 193
  • 184
  • 156
  • 143
  • 132
  • 117
  • 111
  • 109
  • 100
  • 98
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Fuel reforming for fuel cell application /

Hung, Tak Cheong. January 2006 (has links)
Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2006. / Includes bibliographical references. Also available in electronic version.
142

Multivariate characterisation of dual-layered catalysts, reliability and durability of Polymer Electrolyte Membrane Fuel Cells

McCarthy, Nicholas January 2017 (has links)
Hydrogen fuel cells have held out the promise of clean, sustainable power generation for decades, but have failed to deliver on that potential. Inefficiencies in research and development work can be overcome to increase the rate of new knowledge acquisition in this field. A number of medical and engineering disciplines utilise a wide variety of statistical tools in their research to achieve this same end, but there has been little adoption of such statistical approaches within the fuel cell research community. This research undertakes a design of experiments (DoE) approach to the analysis of multiply-covarying (M-ANOVAR) factors by using historic data, and direct experimental work, on a wide variety of polymer electrolyte membrane fuel cells (PEMFCs) cathode gas diffusion media (GDM) and dual layered catalyst structures. This research developed a gradient of polarisation regions' approach; a method for making robust numerical comparisons between large numbers of samples based on polarisation curves, while still measuring the more usual peak power of the PEMFC. The assessment of polarisation gradients was completed in a statistically robust fashion that enabled the creation of regression models of GDMs for multiple input and multiple output data sets. Having established the multivariate method; a set of possibly co-varying factors, a DoE approach was used to assess GDM selection, dual layered catalyst structures and degradation of membrane electrode assembly (MEA) performance over time. Degradation studies monopolise resources to be monopolised for protracted periods. M-ANOVAR allows the addition of other factors in the study, and the total efficiency of the degradation experiment is increased. A 20% reduction in the number of samples to be tested was achieved in the case study presented in this thesis (compared to the usual one factor at a time (OFAT) approach). This research highlights the flexibility and efficiency of DoE approaches to PEMFC degradation experimentation. This research is unique in that it creates catalyst ink formulations where the variation in catalyst loading in each sub-layer of the catalyst layer (CL) was achieved by having a different concentration of the catalyst material on the carbon supports. The final M-ANOVAR analysis indicates a simple average of the individual responses was appropriate for the experiments undertaken. It was shown that low concentration dual layer catalysts on paper GDMs have improved performance compared to paper GDMs with uniform, single layer catalysts: Demonstrating reduced platinum concentrations to achieve equivalent open cell performance. The time to peak power during testing (how long after starting the test it takes to achieve the maximum performance in the cell) was strongly impacted by GDM selection. Furthermore, there was a strong suggestion that previously published results crediting a change in performance due to a single layer, or multi-layered catalyst structures may, in fact, have been due to the selection of GDM used in the experiment instead.
143

Molecular design of inorganic materials

Branton, Philip Michael January 1998 (has links)
Work on modelling compounds possessing die tetraaza[14]annulene (TAA) fragment is described. Modelling studies have been conducted to investigate both structural and electronic properties, of both single molecules and extended arrays of these compounds. The structural aspects have been investigated using molecular mechanics and crystallographic database investigations. Molecules based on the tetraaza[14] annulene structure have been found to adopt one of four conformations. The geometries of these conformations are planar, saddle-shaped, slightly twisted, and dome-shaped. The complexed metal centre and the arrangement of substituents on the periphery of the ligand, have been found to determine which conformation a molecule adopts. In order to model the compounds, three new atom types have been created for the Universal Force Field. The electronic aspects have been investigated using Hartree Fock based calculations for single molecules and Extended Huckel based calculations for extended systems. The electronics of die single molecules have shown there to be a linear trend in the LUMO energies, although die HOMO energies vary very little. The reason for this trend in the LUMOs is unknown, but appears not to be related to any obvious structural feature.
144

Characterization of platinum-group metal nanophase electrocatalysts employed in the direct methanol fuel cell and solid-polymer electrolyte electrolyser

Williams, Mario January 2005 (has links)
Magister Scientiae - MSc / Characterization of nanophase electrocatalysts, which are an essential part in the direct methanol fuel cell (DMFC) and solid-polymer electrolyte (SPE) electrolyser, have been studied in this work. Their nanoparticulate size raises significant challenges in the analytical techniques used in their structural and chemical characterization. Hence, the applicability of analytical protocols for the qualitative and quantitative characterization of structural and chemical properties of nanophase platinum and platinum-ruthenium electrocatalysts was investigated. Also, fabricated carbon-supported platinum, platinum-ruthenium, iridium oxide, and mesoporous silica-templated platinum electrocatalysts were screened on the basis of their electrocatalytic activity. A set of structural and chemical parameters influencing the performance of nanophase electrocatalysts was identified. Parameters included crystallinity, particle size, particle size distribution, agglomeration, aggregation, surface area, thermal stability, chemical speciation, electrocatalytic activity, and electrochemically-active surface area. A large range of analytical tools were employed in characterizing the electrocatalysts of interest. High accuracy and precision in the quantitative and qualitative structural characterization of nanophase electrocatalysts, collected by x-ray diffractometry and transmission electron microscopy, was demonstrated. Selected-area electron diffraction was limited to a rapid qualitative evaluation of electrocatalyst polycrystallinity and crystal symmetry. Scanning electron microscopy was limited to the qualitative evaluation of the agglomeration state of supported electrocatalysts. High-performance particle sizing was unable to resolve the particle size of the electrocatalyst from that of the support and was therefore employed in the quantitative investigation of aggregate size and size distribution in supported electrocatalysts. The technique produced high precision data illustrating the reproducibility of the aggregate size data. N2-physisorption produced surface area and pore size distribution data of high quality, but was unable to determine surface areas specific to the metal phase in supported electrocatalysts. The technique was deemed inconsistent in the accurate determination of average pore size. The resolution of scanning electrochemical microscopy and proton-induced x-ray emission spectroscopy (SECM) did not allow for an investigation of characteristics at the nanoscale. Quantitative chemical information was difficult to extract from SECM maps and the technique was limited to the qualitative characterization of surface topography. Thermogravimetry was suitable for the qualitative investigation of the thermal stability of the nanophase electrocatalysts of interest. In this study, temperature-programmed reduction was able to qualitatively speciate the surface chemical state and investigate the strength of the metal-support interaction in supported nanophase electrocatalysts. Cyclic voltammetry and linear-sweep voltammetry were employed in the electrochemical characterization of nanophase electrocatalysts and both qualitative and quantitative information were obtained. The techniques were able to discriminate between various commercial and fabricated electrocatalysts and identify new highly-active materials. Preparation variables could be critically evaluated for the fabrication of cost-effective highly-active nanophase electrocatalysts. Certain techniques were deemed to be highly applicable in discriminating between high and low activity nanophase electrocatalysts based on their structural and chemical properties. The electrocatalyst characterization strategy and methodology was developed and will be implemented for future characterization of nanophase electrocatalysts. / South Africa
145

Catalyst Coated Membranes (CCMs) for polymerelectrolyte Membrane (PEM) fuel cells

Barron, Olivia January 2010 (has links)
Magister Scientiae - MSc / The main objective of this work it to produce membrane electrode assemblies (MEAs) that have improved performance over MEAs produced by the conventional manner, by producing highly efficient, electroactive, uniform catalyst layers with lower quantities of platinum electrocatalyst. The catalyst coated membrane (CCM) method was used to prepare the MEAs for the PEM fuel cell as it has been reported that this method of MEA fabrication can improve the performance of PEM fuel cells. The MEAs performances were evaluated using polarisation studies on a single cell. A comparison of polarisation curves between CCM MEAs and MEAs produced in the conventional manner illustrated that CCM MEAs have improved performance at high current densities (>800 mA/cm2). / South Africa
146

Preferential oxidation of carbon monoxide over cobalt and palladium based catalysts supported on various metal oxides

Mhlaba, Reineck January 2020 (has links)
Thesis (Ph.D.(Chemistry)) -- University of Limpopo, 2020 / The interest on the use of proton exchange membrane (PEM) fuel cells for vehicle application has increase due to its efficiency, high power density and rapid start up. The on-board reforming process is used to generate hydrogen; however, this process simultaneously produces 1% CO which poisons Pt-based anode catalyst. Previous studies have shown that supported Pd-based catalysts have very good stability on preferential oxidation (PROX) of CO, but these catalysts suffer from lower selectivity. Metal oxides such as Co3O4 and CeO2 are known to have high oxygen vacancy which promotes CO oxidation. Furthermore, the pre-treatment of the catalysts by hydrazine as well as the addition of MnOx species have been shown to improve the surface properties of metal/metal oxides catalysts. The study envisages that the modification of PROX catalysts will improve the CO conversion and its selectivity while maintaining higher stability. In this work, as-prepared (Co3O4) and hydrazine treated cobalt (Co3O4(H)) based catalysts were prepared by precipitation method and investigated at temperature range of 40-220 oC for preferential oxidation (PROX) of CO in excess hydrogen. The FTIR and XPS data of hydrazine treated Co3O4 does not show peak ratio differences, indicating that usual amounts of Co3+ and Co2+ were formed. An improved surface reducibility with smaller crystallite size was noted on Co3O4(H) catalyst, which indicate some surface transformation. Interestingly, the in-situ treatment of standalone Co3O4(H) decreased the maximum CO conversion temperature (T100%) from 160 oC (over Co3O4) to 100 oC. The Co3O4(H) catalyst showed good stability, with approximately 85% CO conversion at 100 oC for 21 h, as compared to fast deactivation of the Co3O4 catalyst. However, the Co3O4(H) catalyst was unstable in both CO2 and the moisture environment. Based on the spent hydrazine treated (CoO(H)) cobalt catalyst, the high PROX is associated with the formation of Co3+ species as confirmed by XRD, XPS, and TPR data. The Pd species was incorporated on different Co3O4 by improved wet impregnation method and this has improved the surface area of the overall catalysts. However, the presence of Pd species on Co3O4(H) catalyst decreased the CO conversion due to formation of moisture. Although, the Pd on Co3O4(H) had lower activity, the catalyst showed better stability under both moisture and CO2 conditions at 100 oC for 21 h. vi The 2wt.% metal oxides (MnO2, CeO2, Cr3O4, TiO2, MgO) on cobalt, and Pd on CeO2- Co3O4 and MnO2-Co3O4 were prepared by co-precipitation method and the structural composition was confirmed by XRD, FTIR, XPS and TPR data. Although, 2wt.%MnO2 on Co3O4(H) showed higher activity at 80 oC, both MnO2 and CeO2 improved the activity of Co3O4(H) at 100 oC. The higher activity of MnO2 is attributed to the higher surface area of the composite catalyst, in relation to ceria composite catalyst. Although the MnO2 species transformed the structure of Co3O4 by lowering the oxidation state to Co2+, the spent catalyst showed transformation from Co2+ to Co3+ during PROX, as confirmed by TPR data. Studies on the effects of CeO2 loading on Co3O4 catalysts, showed an optimum activity over 2wt.%CeO2-Co3O4 as compared to other ceria loadings (i.e., 3, 5, 8, 10, 15, 30wt.%CeO2). However, upon addition of 0.5wt.%Pd species on 2wt.%CeO2- Co3O4(H) composite, the activity of the catalyst decreased slightly at 100 oC, which could be due to a decreased surface area. Although its activity is lower, the catalyst has shown good stability in dry, moisture and CO2 conditions at 100 oC for 21 h. In addition, studies were also undertaken on the effect of MnO2 concentration on Co3O4 catalysts. The data shows that 7wt.%MnO2 species improved the activity of Co3O4 catalyst at 60 oC, however, the catalyst could not improve the activities at higher temperatures. This low activity is associated with a decrease in surface area as concentration increases. The presence of 0.5wt.%Pd species on 7wt.%MnO2-Co3O4 increased the activity at 60 and 80 oC, which could be due to reduction of Co3+ to Co2+ in the presence of Pd, as confirmed by XPS data. The catalyst has shown good stability in dry, moisture, and CO2 conditions at 100 oC for 21 h. The hydrazine treated cobalt-based catalysts in the presence of palladium and manganese oxide is the promising catalysts for proton exchange membrane fuel cells technology. / National Research Foundation (NRF) , Faculty of Science and Agriculture University of Limpopo and School of Physical and Mineral Sciences
147

Model of the Air System Transients in a Fuel Cell Vehicle

Bird, John P. 24 April 2002 (has links)
This thesis describes a procedure to measure the transient effects in a fuel cell air delivery system. These methods were applied to model the 20 kW automotive fuel cell system that was used in Animul H2, a fuel cell-battery hybrid sedan developed by a group of engineering students at Virginia Tech. The air delivery system included the air compressor, the drive motor for the compressor, the motor controller, and any plumbing between the fuel cell inlet and the compressor outlet. The procedure was to collect data from a series of tests of the air delivery system with no load (zero outlet pressure) and at several loads. The air compressor speed, outlet pressure, and motor controller current were measured in response to a variety of speed requests. This data was fit to transfer functions relating the compressor speed, outlet pressure, or motor controller current to the speed request. The fits were found using a least squares optimization technique. After the experimental model was developed, it was augmented with an analytical model of the rest of the fuel cell system. The mass flow of the air was determined from the air compressor speed and outlet pressure with the compressor map. The fuel cell current was found by assuming a constant stoichiometric ratio. The power out of the fuel cell was calculated from the fuel cell current and the pressure with the polarization curve. The model of the fuel cell system was implemented in Matlab/Simulink. Several open and closed loop simulations were run to test the functionality of the fuel cell system model. The gross and net powers of the fuel cell system were found as a function of the compressor operating speed. The time it took for the system to come up to power as a function of idle speed was also found. A PID controller was implemented to allow the system to track a reference power request. The key contributions of this work were to develop a method to test the air delivery system to determine the dynamics of the system, to develop a model based on these tests and some analytical knowledge of fuel cells, and to use the model to simulate the operation and control of a fuel cell system. / Master of Science
148

Design and development of a remote monitoring system for fuel cells

Komweru, Laetitia 07 1900 (has links)
M. Tech. (Engineering, Electrical, Department Applied Electronics and Electronic Communication, Faculty of Engineering and Technology) -- Vaal University of Technology / This dissertation presents the design and development of a remote monitoring system (RMS) for polymer electrolyte membrane fuel cells (PEMFC) to facilitate their efficient operation. The RMS consists of a data acquisition system built around the PIC 16F874 microcontroller that communicates with a personal computer (PC) by use of the RS232 serial communication standard, using a simple wired connection between the two. The design also consists of a human machine interface (HMI) developed in Visual Basic 6.0 to provide a platform for display of the monitored parameters in real time. The first objective was to establish performance variables and past studies on PEM fuel cells revealed that variables that affect the system's performance include: fuel and oxidant input pressure and mass flow rates as well as operation temperature and stack hydration. The next objective was to design and develop a data acquisition system (DAS) that could accurately measure the performance variables and convey the data to a PC. This consisted of sensors whose outputs were input into two microcontrollers that were programmed to process the data received and transfer it to the PC. A HMI was developed that provided graphical display of the data as well as options for storage and reviewing the data. The developed system was then tested on a 150Watt PEM fuel cell stack and the data acquisition system was found to reliably capture the fuel cell variables. The HMI provided a real-time display of the data, with alarms indicating when set minimums were exceeded and all data acquired was saved as a Microsoft Excel file. Some recommendations for improved system performance are suggested. / Vaal University of Technology -- National Research Foundations
149

In-situ electrical terminal characterization of fuel cell stacks

Seger, Eric Matthew. January 1900 (has links) (PDF)
Thesis (MS)--Montana State University--Bozeman, 2009. / Typescript. Chairperson, Graduate Committee: Steven R. Shaw. Includes bibliographical references (leaves 55-56).
150

Simulation and optimisation of a high temperature polymer electrolyte membrane fuel cell stack for combined heat and power

Nomnqa, Myalelo Vuyisa January 2011 (has links)
Thesis (MTech (Chemical Engineering))--Cape Peninsula University of Technology, 2011 / High temperature polymer electrolyte membrane fuel cells (PEMFC) operating between 120-180 oC are currently of much research attention. The acid doped polybenzimidazole (PBI) membranes electrolyte are known for their tolerance to relatively high levels of carbon monoxide impurity in the feed. Most fuel cell modelling are theoretical in nature and are solved in commercial CFD platforms such as Fluent. The models require a lot of time to solve and are not simple enough to be used in complex systems such as CHP systems. This study therefore, focussed on developing a simple but yet accurate model of a high temperature PEMFC for a CHP system. A zero dimensional model for a single cell was developed and implemented in Engineering Equations Solver (EES) environment to express the cell voltage as a function of current density among others. Experimental results obtained from literature were used to validate and improve on the model. The validated models were employed for the simulation of the stack performance to investigate the effects of temperature, pressure, anode stoichiometry and the level of CO impurity in the synthesis gas, on the cell potential and overall performance. Good agreement was obtained from the simulation results and experimental data. The results showed that increasing temperature (up to 180oC) and acid doping level have positive effects on the cell performance. The results also show that the cell can operate with a reformate gas containing up to 2% CO without significant loss of cell voltage at elevated temperatures. The single cell model was extended to a 1 kWe high temperature PEMFC stack and micro-CHP system. The stacks model was validated with experimental data obtained from a test station. The model was used to investigate the performance of PEMFC and CHP system by using uncertainty propagation. The highest combined cogeneration system efficiency of 87.3% is obtained with the corresponding electrical and thermal efficiencies are 41.3% and 46 % respectively. The proposed fuel processing subsystem provides an adequate rate of CH4 conversion and acceptable CO-level, making it appropriate for integration with an HT PEMFC stack. In the steam methane reformer 97% of CH4 conversion is achieved and the water gas shift reactors achieve about 98% removal of CO.

Page generated in 0.0697 seconds