• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 551
  • 142
  • 61
  • 43
  • 24
  • 12
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 1240
  • 1240
  • 314
  • 304
  • 200
  • 193
  • 184
  • 156
  • 143
  • 132
  • 117
  • 111
  • 109
  • 100
  • 98
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Novel Carbon-based Electrode Materials for Up-scaled Microfluidic Fuel Cells

Fuerth, Dillon 22 November 2012 (has links)
In this work, a MFC fabrication procedure including two non-conventional techniques (partial baking and cap-sealing) were employed for the development of an up-scaled microfluidic fuel cell (MFC). Novel carbon-based electrode materials were employed, including carbon foam, fibre, and cloth, the results from which were compared with traditionally-employed carbon paper. The utilization of carbon cloth led to 15% of the maximum power that resulted from carbon paper; however, carbon fibre led to a 24.6% higher power density than carbon paper (normalized by electrode volume). When normalized by projected electrode area, the utilization of carbon foams resulted in power densities up to 42.5% higher than that from carbon paper. The impact of catalyst loading on MFC performance was also investigated, with an increase from 10.9 to 48.3 mgPt cm-2 resulting in a 195% increase in power density.
182

Multiphase Mass Transfer and Capillary Properties of Gas Diffusion Layers for Polymer Electrolyte Membrane Fuel Cells

Gostick, Jeffrey Thomas January 2008 (has links)
A detailed understanding of mass transport and water behavior in gas diffusion layers (GDLs) for polymer electrolyte membrane fuel cells (PEMFCs) is vital to improving performance. Liquid water fills the porous GDL and electrode components, hindering mass transfer, limiting attainable power and decreasing efficiency. The behavior of liquid water in GDLs is poorly understood, and the specific nature of mass transfer of multiphase flow in GDLs are not known. There is no clear direct correlation between easily measurable ex-situ GDL material properties and mass transfer characteristics. This thesis addresses this knowledge gap through a combination of test procedure development, experimentation and numerical pore scale modeling. Experimental techniques have been developed to measure permeability and capillary properties of water and air in the GDL matrix. Pore network modeling is used to estimate transport properties as a function of GDL water saturation since these are extremely difficult to determine experimentally. A method and apparatus for measuring the relationship between air-water capillary pressure and water saturation in PEMFC gas diffusion layers is described. The developed procedure of Gas Controlled Porosimetry is more effective for understanding the behaviour of water in GDL material then traditional methods such as the method of standard porosimetry and mercury intrusion porosimetry. Capillary pressure data for water injection and withdrawal from typical GDL materials are obtained, which demonstrated permanent hysteresis between water intrusion and water withdrawal. Capillary pressure, defined as the difference between the water and gas pressures at equilibrium, is positive during water injection and negative during water withdrawal. The results contribute to the understanding of liquid water behavior in GDL materials which is necessary for the development of effective PEMFC water management strategies and the design of future GDL materials. The absolute gas permeability of GDL materials was measured. Measurements were made in three perpendicular directions to investigate anisotropic properties of various materials. Most materials were found to be significantly anisotropic, with higher in-plane permeability than through-plane permeability. In-plane permeability was also measured as the GDL was compressed to different thicknesses. Typically, compression of a sample to half its initial thickness resulted in a decrease in permeability by an order of magnitude. The relationship between measured permeability and compressed porosity was compared to various models available in the literature, one of which allows the estimation of anisotropic tortuosity. The results of this work will be useful for 3D modeling studies where knowledge of permeability and effective diffusivity tensors is required. A pore network model of mass transport in GDL materials is developed and validated. The model idealizes the GDL as a regular cubic network of pore bodies and pore throats following respective size distributions of the pores. With the use of experimental data obtained the geometric parameters of the pore network model were calibrated with respect to porosimetry and gas permeability measurements for two common GDL materials. The model was subsequently used to compute the pore-scale distribution of water and gas under drainage conditions using an invasion percolation algorithm. From this information, transport properties of GDLs that are very difficult to measure were estimated, including the relative permeability of water and gas, and the effective gas diffusivity as functions of water saturation. Comparison of the model predictions with those obtained from constitutive relationships commonly used in current PEMFC models indicates that the latter may significantly overestimate the gas phase transport properties. The pore network model was also used to calculate the limiting current in a PEMFC under operating conditions for which transport through the GDL dominates mass transfer resistance. The results suggest that a dry GDL does not limit the performance of a PEMFC, but water flooding becomes a significant source of concentration polarization as the GDL becomes increasingly saturated with water. This work has significantly contributed to the understanding of mass transfer in gas diffusion layers in PEMFC through experimental investigation and pore scale modeling.
183

Nanostructured Materials for Energy Storage and Conversion

Ji, Xiulei January 2009 (has links)
Efficient, cost effective, and environmentally friendly energy storage and conversion systems are highly desirable to meet ever increasing demands. Nanostructured materials have attracted great interest due to their many superior characteristics in these energy applications. These materials, typically nanoporous or nanostructured, exhibit faster charge transports, better contact, and sometimes new electrochemical reactivity, which leads to their high energy density, high power and/or great catalytic performances. A series of functional nanostructured materials have been fabricated with new synthetic schemes. Nanoporous materials technology and solid state electrochemistry have been attempted to be integrated in this study. New functional nanoporous materials have been sought for electrochemical purposes. By employing a simple dilution strategy, homogeneously sized, ordered mesoporous silica nanorods (SBA-15), spanning about 10 porous channels in width and ranging from 300 to 600 nm in length were prepared. By employing SBA-15 nanorods as a template, ordered mesoporous carbon (OMC) CMK-3 nanorods were prepared. These porous nanorods exhibit enhanced mass transfer kinetics in their applications owing to their short dimensions. To improve the electronic conductivity of OMC and exploit otherwise wasted copolymer surfactant cross-linked in the channels of as-synthesized SBA-15, direct graphitic mesoporous carbon (termed as DGMC) were synthesized from the copolymer surfactant by employing transition metals (Fe, Co, Ni) as a catalyst. DGMC exhibit three orders higher conductivity and better thermal stability than non-graphitic OMC materials. A series of nanostructured composites were fabricated by employing OMC as structure backbones and/or electronic conduits. DGMC/MoO2 as a Li ion battery anode exhibits a reversible capacity more than twice the value that a graphite anode can provide. Due to the confined and nanosized dimensions of the MoO2, the composite exhibits a cycle life with no capacity fading. Polymer modified OMC/sulfur interwoven nanostructures were prepared and applied as a cathode in Li-S batteries. The nanostructure displays all of the benefits of confinement effects at a small length scale. The nanostructure provides not only high electronic conductivity but also great access to Li+ ingress/egress for reactivity with the sulfur. The tortuous pathways within the framework and the surface polymer strongly retard the diffusion of polysulfide anions out from the channels into the electrolyte and minimize the loss of active mass in the cathode, resulting in a stabilized cycle life at reasonable rates. The Li-S batteries can supply up to near 80% of the theoretical capacity of sulfur (1320 mA∙h/g). This represents more than five times the specific capacity of conventional intercalation Li ion batteries. The assembly process for OMC/S is simple and broadly applicable, conceptually providing new opportunities for materials scientists for tailored design that can be extended to many different electrode materials. Size-controlled supported metal and intermetallic nanocrystallites are of substantial interest because of their wide range of electrocatalytic properties. These intermetallics are normally synthesized by high temperature techniques; however, rigorous size control at high temperature is very challenging. A simple and robust chemically controlled process was developed for synthesizing size controlled noble metal, or bimetallic nanocrystallites, embedded within the porous structure of OMC. The method is applicable to a wide range of catalysts, namely bimetallic PtBi but also including Pt, Ru, Rh and Pd. By using surface-modified OMC, nanocrystallites are formed with monodisperse sizes as low as 1.5 nm, that can be tuned up to 2 and 3.5 nm (equivalent to the channel size of OMC) by thermal treatment. The method is also tailored for the deposition of catalysts on conventional fuel-cell carbon supports. OMC-PtBi nanohybrids were investigated as catalysts for formic acid oxidation for the first time. OMC-PtBi catalysts show an absence of CO poisoning. The excellent catalytic properties can be attributed to the successful catalyst preparation and the faithful practice of the “ensemble effect” at the nanoscale level. A new agitation-friction methodology was developed to prepare the nano-OMC/S composite. The method is completely different from any conventional impregnation which requires the voluntary molecular mobility of guest phases. The method relies on frictional forces, and the hydrophobic attraction of the mixing components. This is the first example of a nanoporous solid which can be infiltrated by another solid phase at room temperature. The C/S nanocomposite exhibits not only better Pt ion sorption kinetics than its bulk counterpart, but also a higher pseudo-second-order rate constant than chitosan sorbents.
184

Multiphase Mass Transfer and Capillary Properties of Gas Diffusion Layers for Polymer Electrolyte Membrane Fuel Cells

Gostick, Jeffrey Thomas January 2008 (has links)
A detailed understanding of mass transport and water behavior in gas diffusion layers (GDLs) for polymer electrolyte membrane fuel cells (PEMFCs) is vital to improving performance. Liquid water fills the porous GDL and electrode components, hindering mass transfer, limiting attainable power and decreasing efficiency. The behavior of liquid water in GDLs is poorly understood, and the specific nature of mass transfer of multiphase flow in GDLs are not known. There is no clear direct correlation between easily measurable ex-situ GDL material properties and mass transfer characteristics. This thesis addresses this knowledge gap through a combination of test procedure development, experimentation and numerical pore scale modeling. Experimental techniques have been developed to measure permeability and capillary properties of water and air in the GDL matrix. Pore network modeling is used to estimate transport properties as a function of GDL water saturation since these are extremely difficult to determine experimentally. A method and apparatus for measuring the relationship between air-water capillary pressure and water saturation in PEMFC gas diffusion layers is described. The developed procedure of Gas Controlled Porosimetry is more effective for understanding the behaviour of water in GDL material then traditional methods such as the method of standard porosimetry and mercury intrusion porosimetry. Capillary pressure data for water injection and withdrawal from typical GDL materials are obtained, which demonstrated permanent hysteresis between water intrusion and water withdrawal. Capillary pressure, defined as the difference between the water and gas pressures at equilibrium, is positive during water injection and negative during water withdrawal. The results contribute to the understanding of liquid water behavior in GDL materials which is necessary for the development of effective PEMFC water management strategies and the design of future GDL materials. The absolute gas permeability of GDL materials was measured. Measurements were made in three perpendicular directions to investigate anisotropic properties of various materials. Most materials were found to be significantly anisotropic, with higher in-plane permeability than through-plane permeability. In-plane permeability was also measured as the GDL was compressed to different thicknesses. Typically, compression of a sample to half its initial thickness resulted in a decrease in permeability by an order of magnitude. The relationship between measured permeability and compressed porosity was compared to various models available in the literature, one of which allows the estimation of anisotropic tortuosity. The results of this work will be useful for 3D modeling studies where knowledge of permeability and effective diffusivity tensors is required. A pore network model of mass transport in GDL materials is developed and validated. The model idealizes the GDL as a regular cubic network of pore bodies and pore throats following respective size distributions of the pores. With the use of experimental data obtained the geometric parameters of the pore network model were calibrated with respect to porosimetry and gas permeability measurements for two common GDL materials. The model was subsequently used to compute the pore-scale distribution of water and gas under drainage conditions using an invasion percolation algorithm. From this information, transport properties of GDLs that are very difficult to measure were estimated, including the relative permeability of water and gas, and the effective gas diffusivity as functions of water saturation. Comparison of the model predictions with those obtained from constitutive relationships commonly used in current PEMFC models indicates that the latter may significantly overestimate the gas phase transport properties. The pore network model was also used to calculate the limiting current in a PEMFC under operating conditions for which transport through the GDL dominates mass transfer resistance. The results suggest that a dry GDL does not limit the performance of a PEMFC, but water flooding becomes a significant source of concentration polarization as the GDL becomes increasingly saturated with water. This work has significantly contributed to the understanding of mass transfer in gas diffusion layers in PEMFC through experimental investigation and pore scale modeling.
185

Nanostructured Materials for Energy Storage and Conversion

Ji, Xiulei January 2009 (has links)
Efficient, cost effective, and environmentally friendly energy storage and conversion systems are highly desirable to meet ever increasing demands. Nanostructured materials have attracted great interest due to their many superior characteristics in these energy applications. These materials, typically nanoporous or nanostructured, exhibit faster charge transports, better contact, and sometimes new electrochemical reactivity, which leads to their high energy density, high power and/or great catalytic performances. A series of functional nanostructured materials have been fabricated with new synthetic schemes. Nanoporous materials technology and solid state electrochemistry have been attempted to be integrated in this study. New functional nanoporous materials have been sought for electrochemical purposes. By employing a simple dilution strategy, homogeneously sized, ordered mesoporous silica nanorods (SBA-15), spanning about 10 porous channels in width and ranging from 300 to 600 nm in length were prepared. By employing SBA-15 nanorods as a template, ordered mesoporous carbon (OMC) CMK-3 nanorods were prepared. These porous nanorods exhibit enhanced mass transfer kinetics in their applications owing to their short dimensions. To improve the electronic conductivity of OMC and exploit otherwise wasted copolymer surfactant cross-linked in the channels of as-synthesized SBA-15, direct graphitic mesoporous carbon (termed as DGMC) were synthesized from the copolymer surfactant by employing transition metals (Fe, Co, Ni) as a catalyst. DGMC exhibit three orders higher conductivity and better thermal stability than non-graphitic OMC materials. A series of nanostructured composites were fabricated by employing OMC as structure backbones and/or electronic conduits. DGMC/MoO2 as a Li ion battery anode exhibits a reversible capacity more than twice the value that a graphite anode can provide. Due to the confined and nanosized dimensions of the MoO2, the composite exhibits a cycle life with no capacity fading. Polymer modified OMC/sulfur interwoven nanostructures were prepared and applied as a cathode in Li-S batteries. The nanostructure displays all of the benefits of confinement effects at a small length scale. The nanostructure provides not only high electronic conductivity but also great access to Li+ ingress/egress for reactivity with the sulfur. The tortuous pathways within the framework and the surface polymer strongly retard the diffusion of polysulfide anions out from the channels into the electrolyte and minimize the loss of active mass in the cathode, resulting in a stabilized cycle life at reasonable rates. The Li-S batteries can supply up to near 80% of the theoretical capacity of sulfur (1320 mA∙h/g). This represents more than five times the specific capacity of conventional intercalation Li ion batteries. The assembly process for OMC/S is simple and broadly applicable, conceptually providing new opportunities for materials scientists for tailored design that can be extended to many different electrode materials. Size-controlled supported metal and intermetallic nanocrystallites are of substantial interest because of their wide range of electrocatalytic properties. These intermetallics are normally synthesized by high temperature techniques; however, rigorous size control at high temperature is very challenging. A simple and robust chemically controlled process was developed for synthesizing size controlled noble metal, or bimetallic nanocrystallites, embedded within the porous structure of OMC. The method is applicable to a wide range of catalysts, namely bimetallic PtBi but also including Pt, Ru, Rh and Pd. By using surface-modified OMC, nanocrystallites are formed with monodisperse sizes as low as 1.5 nm, that can be tuned up to 2 and 3.5 nm (equivalent to the channel size of OMC) by thermal treatment. The method is also tailored for the deposition of catalysts on conventional fuel-cell carbon supports. OMC-PtBi nanohybrids were investigated as catalysts for formic acid oxidation for the first time. OMC-PtBi catalysts show an absence of CO poisoning. The excellent catalytic properties can be attributed to the successful catalyst preparation and the faithful practice of the “ensemble effect” at the nanoscale level. A new agitation-friction methodology was developed to prepare the nano-OMC/S composite. The method is completely different from any conventional impregnation which requires the voluntary molecular mobility of guest phases. The method relies on frictional forces, and the hydrophobic attraction of the mixing components. This is the first example of a nanoporous solid which can be infiltrated by another solid phase at room temperature. The C/S nanocomposite exhibits not only better Pt ion sorption kinetics than its bulk counterpart, but also a higher pseudo-second-order rate constant than chitosan sorbents.
186

Sol-gel processing of barium cerate-based electrolyte films on porous substrates

Agarwal, Vishal 12 1900 (has links)
No description available.
187

Theoretical studies of transition metal surfaces as electrocatalysts for oxygen electroreduction

Lamas, Eduardo J. 17 September 2007 (has links)
In the last few years the quest towards a hydrogen based economy has intensified interest for effective and less expensive catalysts for fuel cell applications. Due to its slow kinetics, alternative catalysts for the oxygen electroreduction reaction are actively researched. Platinum alloys with different transition metals (for example: Ni, Co and Fe) have shown improved activity over pure Pt. The design of a Pt-free catalysts is also highly desirable, and different alternatives including metalloporphyrins and Pd-based catalysts are being researched. Pd-based catalysts constitute an attractive alternative to Pt alloys in some fuel cell applications, not only because of lower costs but also because of the lower reactivity of Pt alloys towards methanol, which is important for improved methanol crossover tolerance on direct methanol fuel cells. In this work we apply density functional theory (DFT) to the study of four catalysts for oxygen electroreduction. The electronic structure of these surfaces is characterized together with their surface reconstruction properties and their interactions with oxygen electroreduction intermediates both in presence and absence of water. The energetics obtained for the intermediates is combined with entropy data from thermodynamic tables to generate free energy profiles for two representative reaction mechanisms where the cell potential is included as a variable. The study of the barriers in these profiles points to the elementary steps in the reaction mechanisms that are likely to be rate-determining. The highest barrier in the series pathway is located at the first proton and charge transfer on all four catalytic surfaces. This is in good agreement with observed rate laws for this reaction. The instability of hydrogen peroxide on all surfaces, especially compared with the relatively higher stability of other intermediates, strongly points at this intermediate as the most likely point where the oxygen bond is broken during oxygen reduction. This adds to the argument that this path might be active during oxygen electroreduction. A better understanding behind the reaction mechanism and reactivities on these representative surfaces will help to find systematic ways of improvement of currently used catalysts in the oxygen electroreduction reaction.
188

Metal-Free Carbon nanotube as the electrode materials of fuel cells

Chung, Ming-Hua 22 July 2008 (has links)
none
189

Mechanical characterization of perfluorosulfonic acid (PFSA) ionomer membranes

Kusoglu, Ahmet. January 2009 (has links)
Thesis (Ph.D.)--University of Delaware, 2009. / Principal faculty advisors: Michael H. Santare and Anette M. Karlsson, Dept. of Mechanical Engineering. Includes bibliographical references.
190

Interaction of nickel-based SOFC anodes with trace contaminants from coal-derived synthesis gas

Hackett, Gregory A. January 2009 (has links)
Thesis (Ph. D.)--West Virginia University, 2009. / Title from document title page. Document formatted into pages; contains xii, 122 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 115-122).

Page generated in 0.0727 seconds