Spelling suggestions: "subject:"fully convolutional beural betworks"" "subject:"fully convolutional beural conetworks""
1 |
Fully Convolutional Networks for Mammogram Segmentation / Neurala Faltningsnät för Segmentering av MammogramCarlsson, Hampus January 2019 (has links)
Segmentation of mammograms pertains to assigning a meaningful label to each pixel found in the image. The segmented mammogram facilitates both the function of Computer Aided Diagnosis Systems and the development of tools used by radiologists during examination. Over the years many approaches to this problem have been presented. A surge in the popularity of new methods to image processing involving deep neural networks present new possibilities in this domain, and this thesis evaluates mammogram segmentation as an application of a specialized neural network architecture, U-net. Results are produced on publicly available datasets mini-MIAS and CBIS-DDSM. Using these two datasets together with mammograms from Hologic and FUJI, instances of U-net are trained and evaluated within and across the different datasets. A total of 10 experiments are conducted using 4 different models. Averaged over classes Pectoral, Breast and Background the best Dice scores are: 0.987 for Hologic, 0.978 for FUJI, 0.967 for mini-MIAS and 0.971 for CBIS-DDSM.
|
2 |
Semantic Segmentation of RGB images for feature extraction in Real TimeElavarthi, Pradyumna January 2019 (has links)
No description available.
|
3 |
Fully Convolutional Neural Networks for Pixel Classification in Historical Document ImagesStewart, Seth Andrew 01 October 2018 (has links)
We use a Fully Convolutional Neural Network (FCNN) to classify pixels in historical document images, enabling the extraction of high-quality, pixel-precise and semantically consistent layers of masked content. We also analyze a dataset of hand-labeled historical form images of unprecedented detail and complexity. The semantic categories we consider in this new dataset include handwriting, machine-printed text, dotted and solid lines, and stamps. Segmentation of document images into distinct layers allows handwriting, machine print, and other content to be processed and recognized discriminatively, and therefore more intelligently than might be possible with content-unaware methods. We show that an efficient FCNN with relatively few parameters can accurately segment documents having similar textural content when trained on a single representative pixel-labeled document image, even when layouts differ significantly. In contrast to the overwhelming majority of existing semantic segmentation approaches, we allow multiple labels to be predicted per pixel location, which allows for direct prediction and reconstruction of overlapped content. We perform an analysis of prevalent pixel-wise performance measures, and show that several popular performance measures can be manipulated adversarially, yielding arbitrarily high measures based on the type of bias used to generate the ground-truth. We propose a solution to the gaming problem by comparing absolute performance to an estimated human level of performance. We also present results on a recent international competition requiring the automatic annotation of billions of pixels, in which our method took first place.
|
4 |
Fully Convolutional Neural Networks for Pixel Classification in Historical Document ImagesStewart, Seth Andrew 01 October 2018 (has links)
We use a Fully Convolutional Neural Network (FCNN) to classify pixels in historical document images, enabling the extraction of high-quality, pixel-precise and semantically consistent layers of masked content. We also analyze a dataset of hand-labeled historical form images of unprecedented detail and complexity. The semantic categories we consider in this new dataset include handwriting, machine-printed text, dotted and solid lines, and stamps. Segmentation of document images into distinct layers allows handwriting, machine print, and other content to be processed and recognized discriminatively, and therefore more intelligently than might be possible with content-unaware methods. We show that an efficient FCNN with relatively few parameters can accurately segment documents having similar textural content when trained on a single representative pixel-labeled document image, even when layouts differ significantly. In contrast to the overwhelming majority of existing semantic segmentation approaches, we allow multiple labels to be predicted per pixel location, which allows for direct prediction and reconstruction of overlapped content. We perform an analysis of prevalent pixel-wise performance measures, and show that several popular performance measures can be manipulated adversarially, yielding arbitrarily high measures based on the type of bias used to generate the ground-truth. We propose a solution to the gaming problem by comparing absolute performance to an estimated human level of performance. We also present results on a recent international competition requiring the automatic annotation of billions of pixels, in which our method took first place.
|
Page generated in 0.0745 seconds