Spelling suggestions: "subject:"age egmentation"" "subject:"age asegmentation""
1 |
Segmentace stránky ve webovém prohlížeči / Page Segmentation in a Web BrowserZubrik, Tomáš January 2021 (has links)
This thesis deals with the web page segmentation in a web browser. The implementation of Box Clustering Segmentation (BCS) method in JavaScript using an automated browser was created. The actual implementation consists of two main steps, which are the box extraction (leaf DOM nodes) from the browser context and their subsequent clustering based on the similarity model defined in BCS. Main result of this thesis is a functional implementation of BCS method usable for web page segmentation. The evaluation of the functionality and accuracy of the implementation is based on a comparison with a reference implementation created in Java.
|
2 |
Implementace algoritmu pro vizuální segmentaci www stránek / Implementation of Algorithm for Visual Web Page SegmentationPopela, Tomáš January 2012 (has links)
Segmentation of WWW pages or page division on di erent semantics blocks is one of the disciplines of information extraction. Master's thesis deals with Vision-based Page Segmentation - VIPS method, which consist in division based on visual properties of page's elements. The method is given in context of other prominent segmentation procedures. In this work, the key steps, that this method consist of are shown and described on examples. For VIPS method it is necessary to cooperate with WWW pages rendering engine in order to obtain Document Object Model of page. The paper presents and describes four most important engines for Java programming language. The output of this work is implementation of VIPS algorithm just in Java language with usage of CSSBox core. The original algorithm implementation from Microsoft's labs is presented. The di erent development stages of library implementing VIPS method and my approach to it's solution are described. In the end of this work the work's outcome is demonstrated on several pages segmentation.
|
3 |
Modeling of complex spatial structures using physics-informed neural network / 物理情報に基づくニューラルネットワークを用いた複雑な内部構造をもつ物体のモデリングHan, Zhongjiang 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(人間・環境学) / 甲第25366号 / 人博第1108号 / 新制||人||259(附属図書館) / 京都大学大学院人間・環境学研究科共生人間学専攻 / (主査)教授 日置 尋久, 教授 立木 秀樹, 准教授 櫻川 貴司, 准教授 深沢 圭一郎, 教授 小山田 耕二 / 学位規則第4条第1項該当 / Doctor of Human and Environmental Studies / Kyoto University / DGAM
|
4 |
Nové metody segmentace webových stránek / New Web Page Segmentation MethodsMalaník, Michal January 2016 (has links)
The aim of this work is to introduce a new vision based web page segmentation method. This method is based on very popular VIPS segmentation algorithm, which is trying to represent the segmented web document in the same way as it is perceived by a user using a web browser. Compared to the VIPS algorithm, there are some optimizations for modern websites in our method, especially for documents created in the HTML 5 language. We also deal with the implementaion of the proposed method using the FITLayout framework.
|
5 |
Indexation et interrogation de pages web décomposées en blocs visuelsFaessel, Nicolas 14 June 2011 (has links)
Cette thèse porte sur l'indexation et l'interrogation de pages Web. Dans ce cadre, nous proposons un nouveau modèle : BlockWeb, qui s'appuie sur une décomposition de pages Web en une hiérarchie de blocs visuels. Ce modèle prend en compte, l'importance visuelle de chaque bloc et la perméabilité des blocs au contenu de leurs blocs voisins dans la page. Les avantages de cette décomposition sont multiples en terme d'indexation et d'interrogation. Elle permet notamment d'effectuer une interrogation à une granularité plus fine que la page : les blocs les plus similaires à une requête peuvent être renvoyés à la place de la page complète. Une page est représentée sous forme d'un graphe acyclique orienté dont chaque nœud est associé à un bloc et étiqueté par l'importance de ce bloc et chaque arc est étiqueté la perméabilité du bloc cible au bloc source. Afin de construire ce graphe à partir de la représentation en arbre de blocs d'une page, nous proposons un nouveau langage : XIML (acronyme de XML Indexing Management Language), qui est un langage de règles à la façon de XSLT. Nous avons expérimenté notre modèle sur deux applications distinctes : la recherche du meilleur point d'entrée sur un corpus d'articles de journaux électroniques et l'indexation et la recherche d'images sur un corpus de la campagne d'ImagEval 2006. Nous en présentons les résultats. / This thesis is about indexing and querying Web pages. We propose a new model called BlockWeb, based on the decomposition of Web pages into a hierarchy of visual blocks. This model takes in account the visual importance of each block as well as the permeability of block's content to their neighbor blocks on the page. Splitting up a page into blocks has several advantages in terms of indexing and querying. It allows to query the system with a finer granularity than the whole page: the most similar blocks to the query can be returned instead of the whole page. A page is modeled as a directed acyclic graph, the IP graph, where each node is associated with a block and is labeled by the coefficient of importance of this block and each arc is labeled by the coefficient of permeability of the target node content to the source node content. In order to build this graph from the bloc tree representation of a page, we propose a new language : XIML (acronym for XML Indexing Management Language), a rule based language like XSLT. The model has been assessed on two distinct dataset: finding the best entry point in a dataset of electronic newspaper articles, and images indexing and querying in a dataset drawn from web pages of the ImagEval 2006 campaign. We present the results of these experiments.
|
6 |
Sémantická analýza webového obsahu / Semantic Analysis of Web ContentHubl, Lukáš January 2020 (has links)
This work deals with the topics of semantic web, web page segmentation and technologies, which are used in this area. It also deals with a modification of one web page segmentation method, specifically DOM-based segmentation, using semantic web technologies. Thus, this work designs the way of web page segmentation based on semantic analysis of individual elements of the web pages content. An application that demonstrates the functionality of the designed segmentation method was also created within this work. With the implemented application, experiments were performed, whose results are also part of this work.
|
7 |
Semantic Segmentation of Historical Document Images Using Recurrent Neural NetworksAhrneteg, Jakob, Kulenovic, Dean January 2019 (has links)
Background. This thesis focuses on the task of historical document semantic segmentation with recurrent neural networks. Document semantic segmentation involves the segmentation of a page into different meaningful regions and is an important prerequisite step of automated document analysis and digitisation with optical character recognition. At the time of writing, convolutional neural network based solutions are the state-of-the-art for analyzing document images while the use of recurrent neural networks in document semantic segmentation has not yet been studied. Considering the nature of a recurrent neural network and the recent success of recurrent neural networks in document image binarization, it should be possible to employ a recurrent neural network for document semantic segmentation and further achieve high performance results. Objectives. The main objective of this thesis is to investigate if recurrent neural networks are a viable alternative to convolutional neural networks in document semantic segmentation. By using a combination of a convolutional neural network and a recurrent neural network, another objective is also to determine if the performance of the combination can improve upon the existing case of only using the recurrent neural network. Methods. To investigate the impact of recurrent neural networks in document semantic segmentation, three different recurrent neural network architectures are implemented and trained while their performance are further evaluated with Intersection over Union. Afterwards their segmentation result are compared to a convolutional neural network. By performing pre-processing on training images and multi-class labeling, prediction images are ultimately produced by the employed models. Results. The results from the gathered performance data shows a 2.7% performance difference between the best recurrent neural network model and the convolutional neural network. Notably, it can be observed that this recurrent neural network model has a more consistent performance than the convolutional neural network but comparable performance results overall. For the other recurrent neural network architectures lower performance results are observed which is connected to the complexity of these models. Furthermore, by analyzing the performance results of a model using a combination of a convolutional neural network and a recurrent neural network, it can be noticed that the combination performs significantly better with a 4.9% performance increase compared to the case with only using the recurrent neural network. Conclusions. This thesis concludes that recurrent neural networks are likely a viable alternative to convolutional neural networks in document semantic segmentation but that further investigation is required. Furthermore, by combining a convolutional neural network with a recurrent neural network it is concluded that the performance of a recurrent neural network model is significantly increased. / Bakgrund. Detta arbete handlar om semantisk segmentering av historiska dokument med recurrent neural network. Semantisk segmentering av dokument inbegriper att dela in ett dokument i olika regioner, något som är viktigt för att i efterhand kunna utföra automatisk dokument analys och digitalisering med optisk teckenläsning. Vidare är convolutional neural network det främsta alternativet för bearbetning av dokument bilder medan recurrent neural network aldrig har använts för semantisk segmentering av dokument. Detta är intressant eftersom om vi tar hänsyn till hur ett recurrent neural network fungerar och att recurrent neural network har uppnått mycket bra resultat inom binär bearbetning av dokument, borde det likväl vara möjligt att använda ett recurrent neural network för semantisk segmentering av dokument och även här uppnå bra resultat. Syfte. Syftet med arbetet är att undersöka om ett recurrent neural network kan uppnå ett likvärdigt resultat jämfört med ett convolutional neural network för semantisk segmentering av dokument. Vidare är syftet även att undersöka om en kombination av ett convolutional neural network och ett recurrent neural network kan ge ett bättre resultat än att bara endast använda ett recurrent neural network. Metod. För att kunna avgöra om ett recurrent neural network är ett lämpligt alternativ för semantisk segmentering av dokument utvärderas prestanda resultatet för tre olika modeller av recurrent neural network. Därefter jämförs dessa resultat med prestanda resultatet för ett convolutional neural network. Vidare utförs förbehandling av bilder och multi klassificering för att modellerna i slutändan ska kunna producera mätbara resultat av uppskattnings bilder. Resultat. Genom att utvärdera prestanda resultaten för modellerna kan vi i en jämförelse med den bästa modellen och ett convolutional neural network uppmäta en prestanda skillnad på 2.7%. Noterbart i det här fallet är att den bästa modellen uppvisar en jämnare fördelning av prestanda. För de två modellerna som uppvisade en lägre prestanda kan slutsatsen dras att deras utfall beror på en lägre modell komplexitet. Vidare vid en jämförelse av dessa två modeller, där den ena har en kombination av ett convolutional neural network och ett recurrent neural network medan den andra endast har ett recurrent neural network uppmäts en prestanda skillnad på 4.9%. Slutsatser. Resultatet antyder att ett recurrent neural network förmodligen är ett lämpligt alternativ till ett convolutional neural network för semantisk segmentering av dokument. Vidare dras slutsatsen att en kombination av de båda varianterna bidrar till ett bättre prestanda resultat.
|
8 |
Fully Convolutional Neural Networks for Pixel Classification in Historical Document ImagesStewart, Seth Andrew 01 October 2018 (has links)
We use a Fully Convolutional Neural Network (FCNN) to classify pixels in historical document images, enabling the extraction of high-quality, pixel-precise and semantically consistent layers of masked content. We also analyze a dataset of hand-labeled historical form images of unprecedented detail and complexity. The semantic categories we consider in this new dataset include handwriting, machine-printed text, dotted and solid lines, and stamps. Segmentation of document images into distinct layers allows handwriting, machine print, and other content to be processed and recognized discriminatively, and therefore more intelligently than might be possible with content-unaware methods. We show that an efficient FCNN with relatively few parameters can accurately segment documents having similar textural content when trained on a single representative pixel-labeled document image, even when layouts differ significantly. In contrast to the overwhelming majority of existing semantic segmentation approaches, we allow multiple labels to be predicted per pixel location, which allows for direct prediction and reconstruction of overlapped content. We perform an analysis of prevalent pixel-wise performance measures, and show that several popular performance measures can be manipulated adversarially, yielding arbitrarily high measures based on the type of bias used to generate the ground-truth. We propose a solution to the gaming problem by comparing absolute performance to an estimated human level of performance. We also present results on a recent international competition requiring the automatic annotation of billions of pixels, in which our method took first place.
|
9 |
Fully Convolutional Neural Networks for Pixel Classification in Historical Document ImagesStewart, Seth Andrew 01 October 2018 (has links)
We use a Fully Convolutional Neural Network (FCNN) to classify pixels in historical document images, enabling the extraction of high-quality, pixel-precise and semantically consistent layers of masked content. We also analyze a dataset of hand-labeled historical form images of unprecedented detail and complexity. The semantic categories we consider in this new dataset include handwriting, machine-printed text, dotted and solid lines, and stamps. Segmentation of document images into distinct layers allows handwriting, machine print, and other content to be processed and recognized discriminatively, and therefore more intelligently than might be possible with content-unaware methods. We show that an efficient FCNN with relatively few parameters can accurately segment documents having similar textural content when trained on a single representative pixel-labeled document image, even when layouts differ significantly. In contrast to the overwhelming majority of existing semantic segmentation approaches, we allow multiple labels to be predicted per pixel location, which allows for direct prediction and reconstruction of overlapped content. We perform an analysis of prevalent pixel-wise performance measures, and show that several popular performance measures can be manipulated adversarially, yielding arbitrarily high measures based on the type of bias used to generate the ground-truth. We propose a solution to the gaming problem by comparing absolute performance to an estimated human level of performance. We also present results on a recent international competition requiring the automatic annotation of billions of pixels, in which our method took first place.
|
10 |
Questions-Réponses en domaine ouvert : sélection pertinente de documents en fonction du contexte de la question / Open domain question-answering : relevant document selection geared to the questionFoucault, Nicolas 16 December 2013 (has links)
Les problématiques abordées dans ma thèse sont de définir une adaptation unifiée entre la sélection des documents et les stratégies de recherche de la réponse à partir du type des documents et de celui des questions, intégrer la solution au système de Questions-Réponses (QR) RITEL du LIMSI et évaluer son apport. Nous développons et étudions une méthode basée sur une approche de Recherche d’Information pour la sélection de documents en QR. Celle-ci s’appuie sur un modèle de langue et un modèle de classification binaire de texte en catégorie pertinent ou non pertinent d’un point de vue QR. Cette méthode permet de filtrer les documents sélectionnés pour l’extraction de réponses par un système QR. Nous présentons la méthode et ses modèles, et la testons dans le cadre QR à l’aide de RITEL. L’évaluation est faite en français en contexte web sur un corpus de 500 000 pages web et de questions factuelles fournis par le programme Quaero. Celle-ci est menée soit sur des documents complets, soit sur des segments de documents. L’hypothèse suivie est que le contenu informationnel des segments est plus cohérent et facilite l’extraction de réponses. Dans le premier cas, les gains obtenus sont faibles comparés aux résultats de référence (sans filtrage). Dans le second cas, les gains sont plus élevés et confortent l’hypothèse, sans pour autant être significatifs. Une étude approfondie des liens existant entre les performances de RITEL et les paramètres de filtrage complète ces évaluations. Le système de segmentation créé pour travailler sur des segments est détaillé et évalué. Son évaluation nous sert à mesurer l’impact de la variabilité naturelle des pages web (en taille et en contenu) sur la tâche QR, en lien avec l’hypothèse précédente. En général, les résultats expérimentaux obtenus suggèrent que notre méthode aide un système QR dans sa tâche. Cependant, de nouvelles évaluations sont à mener pour rendre ces résultats significatifs, et notamment en utilisant des corpus de questions plus importants. / This thesis aims at defining a unified adaptation of the document selection and answer extraction strategies, based on the document and question types, in a Question-Answering (QA) context. The solution is integrated in RITEL (a LIMSI QA system) to assess the contribution. We develop and investigate a method based on an Information Retrieval approach for the selection of relevant documents in QA. The method is based on a language model and a binary model of textual classification in relevant or irrelevant category. It is used to filter unusable documents for answer extraction by matching lists of a priori relevant documents to the question type automatically. First, we present the method along with its underlying models and we evaluate it on the QA task with RITEL in French. The evaluation is done on a corpus of 500,000 unsegmented web pages with factoid questions provided by the Quaero program (i.e. evaluation at the document level or D-level). Then, we evaluate the methodon segmented web pages (i.e. evaluation at the segment level or S-level). The idea is that information content is more consistent with segments, which facilitates answer extraction. D-filtering brings a small improvement over the baseline (no filtering). S-filtering outperforms both the baseline and D-filtering but not significantly. Finally, we study at the S-level the links between RITEL’s performances and the key parameters of the method. In order to apply the method on segments, we created a system of web page segmentation. We present and evaluate it on the QA task with the same corpora used to evaluate our document selection method. This evaluation follows the former hypothesis and measures the impact of natural web page variability (in terms of size and content) on RITEL in its task. In general, the experimental results we obtained suggest that our IR-based method helps a QA system in its task, however further investigations should be conducted – especially with larger corpora of questions – to make them significant.
|
Page generated in 0.4788 seconds