Spelling suggestions: "subject:"actionfunction resemblance"" "subject:"functionaction resemblance""
1 |
Vers la premiere mesure des rapports de branchement B _ (s) -- >µ -µ + avec LHCb detecteur / Towards the first B _ (s) -- >µ -µ+ measurements with the LHCb detectorAdrover, Cosme 10 September 2012 (has links)
Les désintégrations rares B0s → μ + μ-et B0 → μ + μ-sont des canaux de référence pour contraindre les modèles au-delà du Modèle Standard (BSM) avec un plus grand secteur de Higgs. Dans le SM, la fraction de branchement de ces désintégrations est prédite avec une bonne précision: B (B0 (s) → μ + μ-) = (3,2 ± 0,2) × 10-9 et B (B0 → μ + μ-) = (0,10 ± 0,01) × 10-10. Tout écart par rapport à ces valeurs peuvent donner des indications sur la physique BSM. Le cœur de cette thèse comporte deux thèmes principaux: le rejet du bruit de fond et l'extraction du signal. Nous avons optimisé un classificateur multivariée basée sur la décision des arbres technique permettant une réduction drastique du bruit de fond de B → h + h'-(h ≡ π, K) . Après le processus de sélection, environ 76% du fond combinatoire pour B0s → μ + μ-est enlevé, tout en gardant une efficacité de signal d'environ 92%. Une autre discrimination entre le signal et le fond est réalisé avec un autre classificateur multivariée optimisé pour un rejet de grand fond dans la région de l'efficacité de signal faible. Le travail présenté dans cette thèse décrit l'optimisation d'un classificateur d'arbres de décision qui supprime 99,9% du fond renforcé, après le processus de sélection ci-dessus, pour un rendement de signal de 50%. Nous avons proposé une méthode pour estimer les rendements de signaux présents dans notre échantillon de données en utilisant un ajustement extension maximale de vraisemblance. / The rare decays B0s→μ+μ− and B0→μ+μ− are benchmark channels to constrain models beyond the Standard Model (BSM) with a larger Higgs sector. In the SM, the branching fraction of these decays is predicted with a good accuracy: B(B0(s)→μ+μ−)=(3.2±0.2)×10−9 and B(B0→μ+μ−)=(0.10±0.01)×10−10. Any deviation from these values can lead to indications of physics BSM. The core of this thesis comprises two main topics: the background rejection and the signal yields extraction. We have optimized a multivariate classifier based on the boosted decision trees technique allowing for a drastic reduction of the B→h+h′− (h≡π,K) background. After the selection process, about 76% of the combinatorial background for B0s→μ+μ− is removed, while keeping a signal efficiency of about 92%. A further discrimination between signal and background is accomplished with another multivariate classifier optimized to have a large background rejection in the low signal efficiency region. The work presented in this thesis describes the optimization of a boosted decision trees classifier that suppresses 99.9% of the background, after the aforementioned selection process, for a signal efficiency of 50%. We have proposed a method to estimate the signal yields present in our data sample using an extended maximum likelihood fit.
|
Page generated in 0.0972 seconds