Spelling suggestions: "subject:"likelihood function"" "subject:"iikelihood function""
1 |
Vers la premiere mesure des rapports de branchement B _ (s) -- >µ -µ + avec LHCb detecteur / Towards the first B _ (s) -- >µ -µ+ measurements with the LHCb detectorAdrover, Cosme 10 September 2012 (has links)
Les désintégrations rares B0s → μ + μ-et B0 → μ + μ-sont des canaux de référence pour contraindre les modèles au-delà du Modèle Standard (BSM) avec un plus grand secteur de Higgs. Dans le SM, la fraction de branchement de ces désintégrations est prédite avec une bonne précision: B (B0 (s) → μ + μ-) = (3,2 ± 0,2) × 10-9 et B (B0 → μ + μ-) = (0,10 ± 0,01) × 10-10. Tout écart par rapport à ces valeurs peuvent donner des indications sur la physique BSM. Le cœur de cette thèse comporte deux thèmes principaux: le rejet du bruit de fond et l'extraction du signal. Nous avons optimisé un classificateur multivariée basée sur la décision des arbres technique permettant une réduction drastique du bruit de fond de B → h + h'-(h ≡ π, K) . Après le processus de sélection, environ 76% du fond combinatoire pour B0s → μ + μ-est enlevé, tout en gardant une efficacité de signal d'environ 92%. Une autre discrimination entre le signal et le fond est réalisé avec un autre classificateur multivariée optimisé pour un rejet de grand fond dans la région de l'efficacité de signal faible. Le travail présenté dans cette thèse décrit l'optimisation d'un classificateur d'arbres de décision qui supprime 99,9% du fond renforcé, après le processus de sélection ci-dessus, pour un rendement de signal de 50%. Nous avons proposé une méthode pour estimer les rendements de signaux présents dans notre échantillon de données en utilisant un ajustement extension maximale de vraisemblance. / The rare decays B0s→μ+μ− and B0→μ+μ− are benchmark channels to constrain models beyond the Standard Model (BSM) with a larger Higgs sector. In the SM, the branching fraction of these decays is predicted with a good accuracy: B(B0(s)→μ+μ−)=(3.2±0.2)×10−9 and B(B0→μ+μ−)=(0.10±0.01)×10−10. Any deviation from these values can lead to indications of physics BSM. The core of this thesis comprises two main topics: the background rejection and the signal yields extraction. We have optimized a multivariate classifier based on the boosted decision trees technique allowing for a drastic reduction of the B→h+h′− (h≡π,K) background. After the selection process, about 76% of the combinatorial background for B0s→μ+μ− is removed, while keeping a signal efficiency of about 92%. A further discrimination between signal and background is accomplished with another multivariate classifier optimized to have a large background rejection in the low signal efficiency region. The work presented in this thesis describes the optimization of a boosted decision trees classifier that suppresses 99.9% of the background, after the aforementioned selection process, for a signal efficiency of 50%. We have proposed a method to estimate the signal yields present in our data sample using an extended maximum likelihood fit.
|
2 |
Eliminação de parâmetros perturbadores em um modelo de captura-recapturaSalasar, Luis Ernesto Bueno 18 November 2011 (has links)
Made available in DSpace on 2016-06-02T20:04:51Z (GMT). No. of bitstreams: 1
4032.pdf: 1016886 bytes, checksum: 6e1eb83f197a88332f8951b054c1f01a (MD5)
Previous issue date: 2011-11-18 / Financiadora de Estudos e Projetos / The capture-recapture process, largely used in the estimation of the number of elements of animal population, is also applied to other branches of knowledge like Epidemiology, Linguistics, Software reliability, Ecology, among others. One of the _rst applications of this method was done by Laplace in 1783, with aim at estimate the number of inhabitants of France. Later, Carl G. J. Petersen in 1889 and Lincoln in 1930 applied the same estimator in the context of animal populations. This estimator has being known in literature as _Lincoln-Petersen_ estimator. In the mid-twentieth century several researchers dedicated themselves to the formulation of statistical models appropriated for the estimation of population size, which caused a substantial increase in the amount of theoretical and applied works on the subject. The capture-recapture models are constructed under certain assumptions relating to the population, the sampling procedure and the experimental conditions. The main assumption that distinguishes models concerns the change in the number of individuals in the population during the period of the experiment. Models that allow for births, deaths or migration are called open population models, while models that does not allow for these events to occur are called closed population models. In this work, the goal is to characterize likelihood functions obtained by applying methods of elimination of nuissance parameters in the case of closed population models. Based on these likelihood functions, we discuss methods for point and interval estimation of the population size. The estimation methods are illustrated on a real data-set and their frequentist properties are analised via Monte Carlo simulation. / O processo de captura-recaptura, amplamente utilizado na estimação do número de elementos de uma população de animais, é também aplicado a outras áreas do conhecimento como Epidemiologia, Linguística, Con_abilidade de Software, Ecologia, entre outras. Uma das primeiras aplicações deste método foi feita por Laplace em 1783, com o objetivo de estimar o número de habitantes da França. Posteriormente, Carl G. J. Petersen em 1889 e Lincoln em 1930 utilizaram o mesmo estimador no contexto de popula ções de animais. Este estimador _cou conhecido na literatura como o estimador de _Lincoln-Petersen_. Em meados do século XX muitos pesquisadores se dedicaram à formula ção de modelos estatísticos adequados à estimação do tamanho populacional, o que causou um aumento substancial da quantidade de trabalhos teóricos e aplicados sobre o tema. Os modelos de captura-recaptura são construídos sob certas hipóteses relativas à população, ao processo de amostragem e às condições experimentais. A principal hipótese que diferencia os modelos diz respeito à mudança do número de indivíduos da popula- ção durante o período do experimento. Os modelos que permitem que haja nascimentos, mortes ou migração são chamados de modelos para população aberta, enquanto que os modelos em que tais eventos não são permitidos são chamados de modelos para popula- ção fechada. Neste trabalho, o objetivo é caracterizar o comportamento de funções de verossimilhança obtidas por meio da utilização de métodos de eliminação de parâmetros perturbadores, no caso de modelos para população fechada. Baseado nestas funções de verossimilhança, discutimos métodos de estimação pontual e intervalar para o tamanho populacional. Os métodos de estimação são ilustrados através de um conjunto de dados reais e suas propriedades frequentistas são analisadas via simulação de Monte Carlo.
|
3 |
On Fuzzy Bayesian InferenceFrühwirth-Schnatter, Sylvia January 1990 (has links) (PDF)
In the paper at hand we apply it to Bayesian statistics to obtain "Fuzzy Bayesian Inference". In the subsequent sections we will discuss a fuzzy valued likelihood function, Bayes' theorem for both fuzzy data and fuzzy priors, a fuzzy Bayes' estimator, fuzzy predictive densities and distributions, and fuzzy H.P.D .-Regions. (author's abstract) / Series: Forschungsberichte / Institut für Statistik
|
4 |
Modelo de confiabilidade para sistemas reparáveis considerando diferentes condições de manutenção preventiva imperfeita. / Reliability model to repairable system under different conditions for imperfect preventive maintenance.Coque Junior, Marcos Antonio 06 October 2016 (has links)
Um sistema reparável opera sob uma estratégia de manutenção que exige ações de recuperação preventiva em tempos pré-definidos e ações de reparo quando ocorre a perda de função do sistema. A manutenção preventiva (MP) é programada periodicamente e muitas vezes possui um intervalo de tempo fixo para ações. No entanto, as atividades de MP podem não restaurar o sistema para uma condição similar ao início de vida deste, mas para uma situação intermediária. Nesse caso, a MP é denominada de imperfeita. Além disso, ao longo da vida do sistema, são executados diferentes planos de manutenção com condições e atividades distintas que podem afetar a intensidade de falha de diferentes maneiras. Para modelar essas características da MP em um sistema reparável, propõe-se uma nova classe de modelo de fator de melhoria, denominado fator de melhoria variável que possibilita a modelagem da situação de manutenção perfeita. A formulação da função de verossimilhança foi desenvolvida para estimação dos parâmetros bem como desenvolvidos testes de verificação da qualidade de ajuste, intervalos de confiança para os parâmetros e otimização da periodicidade de realização da MP com base no enfoque dos novos modelos propostos. Os resultados foram aplicados em dados reais e verificou-se uma parametrização mais flexível a MP imperfeita e maior versatilidade nas análises de confiabilidade do sistema quando utilizado os novos modelos. / A repairable system operates under a maintenance strategy that calls for preventive repair actions at prescheduled times and the repair actions that restore system when failure occurs. The preventive maintenance (PM) is scheduled periodically and it often holds a fixed time interval for PM actions. However, PM activities are generally imperfect and cannot restore the system to as good as new condition but to an intermediate situation, which is called imperfect PM. In addition, throughout system life are implemented diverse maintenance policies with different activities and conditions that may affect the failure intensity in different ways. To model these PM characteristics, proposes a new model class of improvement factor called variable improvement factor that also enables modeling perfect maintenance situation. The likelihood function is developed for parameter estimation as well as goodness-of-fit tests and confidence intervals for the parameters are developed, and optimization of the PM intervals based on the proposed models is presented. The proposed model was applied to a data set and a more flexible parameterization for imperfect PM and greater versatility in the system reliability analysis were verified with the use of the new model.
|
5 |
Eliminação de parâmetros perturbadores na estimação de tamanhos populacionaisFestucci, Ana Claudia 15 January 2010 (has links)
Made available in DSpace on 2016-06-02T20:06:04Z (GMT). No. of bitstreams: 1
2751.pdf: 886213 bytes, checksum: 2f07f7329a7f25f1759ddb5d7a6edd66 (MD5)
Previous issue date: 2010-01-15 / Financiadora de Estudos e Projetos / In this study, we used the capture-recapture procedure to estimate the size of a closed population. We analysed three di_erent statistics models. For each one of these models we determined - through several methods of eliminating nuisance parameters - the likelihood function and the pro_le, conditional, uniform integrated, Je_reys integrated and generalized integrated likelihood functions of the population size, except for the last model where we determined a function that is analogous to the conditional likelihood function, called integrated restricted likelihood function. In each instance we determined the respectives maximum likelihood estimates, the empirical con_dence intervals and the empirical mean squared errors of the estimates for the population size and we studied, using simulated data, the performances of the models. / Nesta dissertação utilizamos o processo de captura-recaptura para estimar o tamanho de uma população fechada. Analisamos três modelos estatísticos diferentes e, para cada um deles, através de diversas metodologias de eliminação de parâmetros perturbadores, determinamos as funções de verossimilhança e de verossimilhança perfilada, condicional, integrada uniforme, integrada de Jeffreys e integrada generalizada do tamanho populacional, com exceção do último modelo onde determinamos uma função análoga à função de verossimilhança condicional, denominada função de verossimilhança restrita integrada. Em cada capítulo determinamos as respectivas estimativas de máxima verossimilhança e construímos intervalos de confiança empíricos para o tamanho populacional, bem como determinamos os erros quadráticos médios empíricos das estimativas e estudamos, através de dados simulados, as performances dos modelos.
|
6 |
Modelo de confiabilidade para sistemas reparáveis considerando diferentes condições de manutenção preventiva imperfeita. / Reliability model to repairable system under different conditions for imperfect preventive maintenance.Marcos Antonio Coque Junior 06 October 2016 (has links)
Um sistema reparável opera sob uma estratégia de manutenção que exige ações de recuperação preventiva em tempos pré-definidos e ações de reparo quando ocorre a perda de função do sistema. A manutenção preventiva (MP) é programada periodicamente e muitas vezes possui um intervalo de tempo fixo para ações. No entanto, as atividades de MP podem não restaurar o sistema para uma condição similar ao início de vida deste, mas para uma situação intermediária. Nesse caso, a MP é denominada de imperfeita. Além disso, ao longo da vida do sistema, são executados diferentes planos de manutenção com condições e atividades distintas que podem afetar a intensidade de falha de diferentes maneiras. Para modelar essas características da MP em um sistema reparável, propõe-se uma nova classe de modelo de fator de melhoria, denominado fator de melhoria variável que possibilita a modelagem da situação de manutenção perfeita. A formulação da função de verossimilhança foi desenvolvida para estimação dos parâmetros bem como desenvolvidos testes de verificação da qualidade de ajuste, intervalos de confiança para os parâmetros e otimização da periodicidade de realização da MP com base no enfoque dos novos modelos propostos. Os resultados foram aplicados em dados reais e verificou-se uma parametrização mais flexível a MP imperfeita e maior versatilidade nas análises de confiabilidade do sistema quando utilizado os novos modelos. / A repairable system operates under a maintenance strategy that calls for preventive repair actions at prescheduled times and the repair actions that restore system when failure occurs. The preventive maintenance (PM) is scheduled periodically and it often holds a fixed time interval for PM actions. However, PM activities are generally imperfect and cannot restore the system to as good as new condition but to an intermediate situation, which is called imperfect PM. In addition, throughout system life are implemented diverse maintenance policies with different activities and conditions that may affect the failure intensity in different ways. To model these PM characteristics, proposes a new model class of improvement factor called variable improvement factor that also enables modeling perfect maintenance situation. The likelihood function is developed for parameter estimation as well as goodness-of-fit tests and confidence intervals for the parameters are developed, and optimization of the PM intervals based on the proposed models is presented. The proposed model was applied to a data set and a more flexible parameterization for imperfect PM and greater versatility in the system reliability analysis were verified with the use of the new model.
|
7 |
Contribution to the estimation of VARMA models with time-dependent coefficients / Contribution à l'estimation des modèles VARMA à coefficients dépendant du temps.Alj, Abdelkamel 07 September 2012 (has links)
Dans cette thèse, nous étudions l’estimation de modèles autorégressif-moyenne mobile<p>vectoriels ou VARMA, `a coefficients dépendant du temps, et avec une matrice de covariance<p>des innovations dépendant du temps. Ces modèles sont appel´es tdVARMA. Les éléments<p>des matrices des coefficients et de la matrice de covariance sont des fonctions déterministes<p>du temps dépendant d’un petit nombre de paramètres. Une première partie de la thèse<p>est consacrée à l’étude des propriétés asymptotiques de l’estimateur du quasi-maximum<p>de vraisemblance gaussienne. La convergence presque sûre et la normalité asymptotique<p>de cet estimateur sont démontrées sous certaine hypothèses vérifiables, dans le cas o`u les<p>coefficients dépendent du temps t mais pas de la taille des séries n. Avant cela nous considérons les propriétés asymptotiques des estimateurs de modèles non-stationnaires assez<p>généraux, pour une fonction de pénalité générale. Nous passons ensuite à l’application de<p>ces théorèmes en considérant que la fonction de pénalité est la fonction de vraisemblance<p>gaussienne (Chapitre 2). L’étude du comportement asymptotique de l’estimateur lorsque<p>les coefficients du modèle dépendent du temps t et aussi de n fait l’objet du Chapitre 3.<p>Dans ce cas, nous utilisons une loi faible des grands nombres et un théorème central limite<p>pour des tableaux de différences de martingales. Ensuite, nous présentons des conditions<p>qui assurent la consistance faible et la normalité asymptotique. Les principaux<p>résultats asymptotiques sont illustrés par des expériences de simulation et des exemples<p>dans la littérature. La deuxième partie de cette thèse est consacrée à un algorithme qui nous<p>permet d’évaluer la fonction de vraisemblance exacte d’un processus tdVARMA d’ordre (p, q) gaussien. Notre algorithme est basé sur la factorisation de Cholesky d’une matrice<p>bande partitionnée. Le point de départ est une généralisation au cas multivarié de Mélard<p>(1982) pour évaluer la fonction de vraisemblance exacte d’un modèle ARMA(p, q) univarié. Aussi, nous utilisons quelques résultats de Jonasson et Ferrando (2008) ainsi que les programmes Matlab de Jonasson (2008) dans le cadre d’une fonction de vraisemblance<p>gaussienne de modèles VARMA à coefficients constants. Par ailleurs, nous déduisons que<p>le nombre d’opérations requis pour l’évaluation de la fonction de vraisemblance en fonction de p, q et n est approximativement le double par rapport à un modèle VARMA à coefficients<p>constants. L’implémentation de cet algorithme a été testée en comparant ses résultats avec<p>d’autres programmes et logiciels très connus. L’utilisation des modèles VARMA à coefficients<p>dépendant du temps apparaît particulièrement adaptée pour la dynamique de quelques<p>séries financières en mettant en évidence l’existence de la dépendance des paramètres en<p>fonction du temps.<p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
8 |
台灣地區男女自殺死亡率之比較研究 / 無柯亭安 Unknown Date (has links)
為瞭解臺灣地區男女自殺死亡率的差異,本文採用Held and Riebler (2010)所建議的多元年齡-年代-世代模型,同時探討男女性自殺死亡率在年齡、年代及世代三種效應上的差異,我們同時使用非條件概似函數法(或稱對數線性模型法)及條件概似函數法(或稱多項式邏輯模型法)對台灣地區男女自殺死亡資料來配適模型。結果發現在假設世代效應與性別無關的前提下,年齡方面, 女性的自殺死亡率在10歲到24歲時顯著比男性高,在15到19歲這個年齡層差異達到最大,20歲之後差異開始變小,到了25至34歲,兩性則已無顯著差異,35歲之後男性的自殺死亡率開始顯著大於女性,並且隨著年齡增長兩性的差異越大,直到60歲之後差異才開始減小,到70歲時兩性無顯著差異。年代方面,男女的自殺死亡率在1959年到1973年間沒有顯著的差異,在1974到1988年女性的自殺死亡率顯著大於男性並於1979年到1983年來到最低點,也就是差異最大,之後差異開始變小,到了1989年時兩性已無顯著差異,從1994年開始男性的自殺死亡率反而開始顯著大於女性,而且隨著年代增加差異越大,並於2004到2008這個年代層差異達到最大。 / To understand the differences in suicide mortality between men and women in Taiwan, this study uses the Multivariate Age-Period-Cohort model proposed by Held and Riebler (2010), and explores the differences in suicide mortality between men and women on age, period and cohort effects adjusted for the other two. We use both unconditional likelihood function method (or log-linear model) and conditional likelihood function method (or multinomial logit model) to fit the model. Assuming that the cohort effect is independent of the gender, female suicide mortality in the age of 10 to 24 years old appears significantly higher than that of male, and the maximum age difference appears at the age of 15 to 19 years old. The difference is getting smaller after the age of 20, and gender difference is no longer significant between age of 25 to 34. After 35-year-old, male suicide death rate starts to exceed that of female, and the difference increases until the age of 60. After 60 years old, the difference starts to decrease till age of 70 at which there is no significant gender differences. There is no significant gender-specific suicide mortality difference between years 1959 and 1973. From 1974 to 1988 female suicide mortality rate is significantly greater than male. The difference reaches the peak in1979 to 1983. After that, the difference is getting smaller, and gender difference is no longer significant between 1989 and 1993. From 1994, suicide mortality for men begins to be significantly greater than women, and the difference increases with period. This difference reaches the maximum level in 2004 to 2008.
|
9 |
貝氏Weibull模式應用於加速壽命試驗吳雅婷, Wu,Ya-Ting Unknown Date (has links)
本文所探討的中心為貝氏模型運用於加速壽命試驗,並且假設受測項目之壽命服從Weibull分配。加速實驗環境有三種,其中第二種環境代表正常狀態,採用加速壽命試驗的方式涵蓋了三種:固定應力、漸進之逐步應力和變量曲線之逐步應力。對於先驗參數,並不是直接給予特定的值,而是透過專家評估,給定各種環境之下的產品可靠度之中位數或百分位數,再利用這些資訊經過數值運算解出先驗參數。資料的型態分成兩種,一為區間資料,另一為型一設限資料,透過蒙地卡羅法模擬出後驗分配,並且估計正常環境狀態的可靠度。 / This article develops a Bayes inference model for accelerated life testing assuming failure times at each stress level are Weibull distributed. Using the approach, there are three stressed to be used, and the three testing scenarios to be adapted are as follows:fixed-stress, progressive step-stress and profile step-stress. Prior information is used to indirectly define a multivariate prior distribution for the scale parameters at the various stress levels. The inference procedure accommodates both the interval data sampling strategy and type I censored sampling strategy for the collection of ALT test data. The inference procedure uses the well-known Markov Chain Monte Carlo methods to derive posterior approximations.
|
10 |
Application Of The Empirical Likelihood Method In Proportional Hazards ModelHe, Bin 01 January 2006 (has links)
In survival analysis, proportional hazards model is the most commonly used and the Cox model is the most popular. These models are developed to facilitate statistical analysis frequently encountered in medical research or reliability studies. In analyzing real data sets, checking the validity of the model assumptions is a key component. However, the presence of complicated types of censoring such as double censoring and partly interval-censoring in survival data makes model assessment difficult, and the existing tests for goodness-of-fit do not have direct extension to these complicated types of censored data. In this work, we use empirical likelihood (Owen, 1988) approach to construct goodness-of-fit test and provide estimates for the Cox model with various types of censored data. Specifically, the problems under consideration are the two-sample Cox model and stratified Cox model with right censored data, doubly censored data and partly interval-censored data. Related computational issues are discussed, and some simulation results are presented. The procedures developed in the work are applied to several real data sets with some discussion.
|
Page generated in 0.0929 seconds