1 |
Econometric analysis of limited dependent time seriesManrique Garcia, Aurora January 1997 (has links)
No description available.
|
2 |
Applying MCMC methods to multi-level modelsBrowne, William J. January 1998 (has links)
No description available.
|
3 |
MCMC Estimation of Classical and Dynamic Switching and Mixture ModelsFrühwirth-Schnatter, Sylvia January 1998 (has links) (PDF)
In the present paper we discuss Bayesian estimation of a very general model class where the distribution of the observations is assumed to depend on a latent mixture or switching variable taking values in a discrete state space. This model class covers e.g. finite mixture modelling, Markov switching autoregressive modelling and dynamic linear models with switching. Joint Bayesian estimation of all latent variables, model parameters and parameters determining the probability law of the switching variable is carried out by a new Markov Chain Monte Carlo method called permutation sampling. Estimation of switching and mixture models is known to be faced with identifiability problems as switching and mixture are identifiable only up to permutations of the indices of the states. For a Bayesian analysis the posterior has to be constrained in such a way that identifiablity constraints are fulfilled. The permutation sampler is designed to sample efficiently from the constrained posterior, by first sampling from the unconstrained posterior - which often can be done in a convenient multimove manner - and then by applying a suitable permutation, if the identifiability constraint is violated. We present simple conditions on the prior which ensure that this method is a valid Markov Chain Monte Carlo method (that is invariance, irreducibility and aperiodicity hold). Three case studies are presented, including finite mixture modelling of fetal lamb data, Markov switching Autoregressive modelling of the U.S. quarterly real GDP data, and modelling the U .S./U.K. real exchange rate by a dynamic linear model with Markov switching heteroscedasticity. (author's abstract) / Series: Forschungsberichte / Institut für Statistik
|
4 |
Bayesian Variable Selection in Spatial Autoregressive ModelsCrespo Cuaresma, Jesus, Piribauer, Philipp 07 1900 (has links) (PDF)
This paper compares the performance of Bayesian variable selection approaches for spatial autoregressive models. We present two alternative approaches which can be implemented using Gibbs sampling methods in a straightforward way and allow us to deal with the problem of model uncertainty in spatial autoregressive models in a flexible and computationally efficient way. In a simulation study we show that the variable selection approaches tend to outperform existing Bayesian model averaging techniques both in terms of in-sample predictive performance and computational efficiency.
(authors' abstract) / Series: Department of Economics Working Paper Series
|
5 |
Generating Evidence for COPD Clinical Guidelines Using EHRsAmber M Johnson (7023350) 14 August 2019 (has links)
The Global Initiative for Chronic Obstructive Lung Disease (GOLD) guidelinesare used to guide clinical practices for treating Chronic Obstructive Pulmonary Disease (COPD). GOLD focuses heavily on stable COPD patients, limiting its use fornon-stable COPD patients such as those with severe, acute exacerbations of COPD (AECOPD) that require hospitalization. Although AECOPD can be heterogeneous, it can lead to deterioration of health and early death. Electronic health records (EHRs) can be used to analyze patient data for understanding disease progression and generating guideline evidence for AECOPD patients. However, because of its structure and representation, retrieving, analyzing, and properly interpreting EHR data can be challenging, and existing tools do not provide granular analytic capabil-ities for this data.<div><br></div><div>This dissertation presents, develops, and implements a novel approach that systematically captures the effect of interventions during patient medical encounters, and hence may support evidence generation for clinical guidelines in a systematic and principled way. A conceptual framework that structures components, such as data storage, aggregation, extraction, and visualization, to support EHR data analytics for granular analysis is introduced. We develop a software framework in Python based on these components to create longitudinal representations of raw medical data extracted from the Medical Information Mart for Intensive Care (MIMIC-III) clinical database. The software framework consists of two tools: Patient Aggregated Care Events (PACE), a novel tool for constructing and visualizing entire medical histories of both individual patients and patient cohorts, and Mark SIM, a Markov Chain Monte Carlo modeling and simulation tool for predicting clinical outcomes through probabilistic analysis that captures granular temporal aspects of aggregated, clinicaldata.<br></div><div><br></div><div>We assess the efficacy of antibiotic treatment and the optimal time of initiationfor in-hospitalized AECOPD patients as an application to probabilistic modeling. We identify 697 AECOPD patients of which 26.0% were administered antibiotics. Our model simulations show a 50% decrease in mortality rate as the number of patients administered antibiotics increase, and an estimated 5.5% mortality rate when antibiotics are initially administrated after 48 hours vs 1.8% when antibiotics are initially administrated between 24 and 48 hours. Our findings suggest that there may be amortality benefit in initiation of antibiotics early in patients with acute respiratory failure in ICU patients with severe AECOPD.<br></div><div><br></div><div>Thus, we show that it is feasible to enhance representation of EHRs to aggregate patients’ entire medical histories with temporal trends and support complex clinical questions to drive clinical guidelines for COPD.<br></div>
|
6 |
Modelling Long-Term Persistence in Hydrological Time SeriesThyer, Mark Andrew January 2001 (has links)
The hidden state Markov (HSM) model is introduced as a new conceptual framework for modelling long-term persistence in hydrological time series. Unlike the stochastic models currently used, the conceptual basis of the HSM model can be related to the physical processes that influence long-term hydrological time series in the Australian climatic regime. A Bayesian approach was used for model calibration. This enabled rigourous evaluation of parameter uncertainty, which proved crucial for the interpretation of the results. Applying the single site HSM model to rainfall data from selected Australian capital cities provided some revealing insights. In eastern Australia, where there is a significant influence from the tropical Pacific weather systems, the results showed a weak wet and medium dry state persistence was likely to exist. In southern Australia the results were inconclusive. However, they suggested a weak wet and strong dry persistence structure may exist, possibly due to the infrequent incursion of tropical weather systems in southern Australia. This led to the postulate that the tropical weather systems are the primary cause of two-state long-term persistence. The single and multi-site HSM model results for the Warragamba catchment rainfall data supported this hypothesis. A strong two-state persistence structure was likely to exist in the rainfall regime of this important water supply catchment. In contrast, the single and multi-site results for the Williams River catchment rainfall data were inconsistent. This illustrates further work is required to understand the application of the HSM model. Comparisons with the lag-one autoregressive [AR(1)] model showed that it was not able to reproduce the same long-term persistence as the HSM model. However, with record lengths typical of real data the difference between the two approaches was not statistically significant. Nevertheless, it was concluded that the HSM model provides a conceptually richer framework than the AR(1) model. / PhD Doctorate
|
7 |
Análise espacial do potencial fotovoltaico em telhados de residências usando modelagem hierárquica bayesiana / Análisis espacial del potencial fotovoltaico en tejados de residencias usando modelamiento jerárquico bayesianoVillavicencio Gastelu, Joel [UNESP] 01 March 2016 (has links)
Submitted by JOÉL VILLAVICENCIO GASTELÚ null (tear_295@hotmail.com) on 2016-03-30T17:36:01Z
No. of bitstreams: 1
Dissertação_Rev1_13 - Joel Gastelu.pdf: 3335802 bytes, checksum: 93fbe0689da0072cc77a9120a8e24b02 (MD5) / Rejected by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br), reason: Solicitamos que realize uma nova submissão seguindo as orientações abaixo:
O arquivo submetido está sem a ficha catalográfica. A versão submetida por você é considerada a versão final da dissertação/tese, portanto não poderá ocorrer qualquer alteração em seu conteúdo após a aprovação.
Corrija estas informações e realize uma nova submissão contendo o arquivo correto.
Agradecemos a compreensão.
on 2016-04-01T13:14:50Z (GMT) / Submitted by JOÉL VILLAVICENCIO GASTELÚ null (tear_295@hotmail.com) on 2016-04-01T19:04:22Z
No. of bitstreams: 1
Dissertação_Joel.pdf: 4253690 bytes, checksum: 75d9921d8416eec7341f8bf0e2182766 (MD5) / Rejected by Ana Paula Grisoto (grisotoana@reitoria.unesp.br), reason: Solicitamos que realize uma nova submissão seguindo as orientações abaixo:
A data informada na capa do documento está diferente da data de defesa que consta na ficha catalográfica e folha de aprovação.
Corrija esta informação no arquivo PDF e realize uma nova submissão contendo o arquivo correto.
Agradecemos a compreensão. on 2016-04-05T13:53:33Z (GMT) / Submitted by JOÉL VILLAVICENCIO GASTELÚ null (tear_295@hotmail.com) on 2016-04-06T22:35:57Z
No. of bitstreams: 1
Dissertação_Joel.pdf: 4231140 bytes, checksum: 4bd6143a52dc3a6846abd4f996ba9306 (MD5) / Approved for entry into archive by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br) on 2016-04-07T12:21:23Z (GMT) No. of bitstreams: 1
gastelu_jv_me_ilha.pdf: 4231140 bytes, checksum: 4bd6143a52dc3a6846abd4f996ba9306 (MD5) / Made available in DSpace on 2016-04-07T12:21:23Z (GMT). No. of bitstreams: 1
gastelu_jv_me_ilha.pdf: 4231140 bytes, checksum: 4bd6143a52dc3a6846abd4f996ba9306 (MD5)
Previous issue date: 2016-03-01 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / No presente trabalho tem-se como objetivo estimar o potencial fotovoltaico devido à instalação de sistemas fotovoltaicos em telhados de áreas residenciais. Na estimação desse potencial foram consideradas quatro grandezas: o nível de irradiação solar, a área aproveitável de telhado para a instalação dos sistemas fotovoltaicos, a eficiência de conversão dos sistemas fotovoltaicos e as probabilidades de instalação dos sistemas fotovoltaicos, que caracterizam as preferências dos habitantes à instalação desses sistemas. Um modelo hierárquico bayesiano foi proposto para o cálculo das probabilidades de instalação dos sistemas fotovoltaicos. Nesse modelo bayesiano é estabelecida uma relação entre as probabilidades de instalação, as variáveis socioeconômicas e as interações entre as subáreas, através de um modelo linear generalizado misto. O cálculo do valor esperado das probabilidades de instalação foi realizado usando o método de Monte Carlo via cadeias de Markov. Os resultados do potencial fotovoltaico são apresentados através de mapas temáticos, que permitem a visualização da distribuição espacial do seu valor esperado. Esta informação pode ajudar as concessionárias de distribuição no planejamento e expansão de suas redes elétricas em regiões com maior potencial de geração fotovoltaica. / The present work aims to estimate the photovoltaic potential for installing solar panel on the rooftop of residential areas. The estimation of this potential considers four quantities: the solar radiation level, rooftop availability for installation of photovoltaic systems, conversion efficiency of the photovoltaic systems and the probabilities for the installation of photovoltaic systems that characterize the preferences of the inhabitants to the installation of such systems. A bayesian hierarchical model is proposed to calculate the installation probabilities of photovoltaic systems. This bayesian model establishes a relation among the installation probabilities, socioeconomic variables and interactions between subareas, through a generalized linear mixed model. The calculation of expected value of installation probabilities in each subarea is performed using the Markov Chain Monte Carlo method. Photovoltaic potential results are presented through thematic maps that allow the visualization of the spatial distribution of its expected value. This information can help to distribution utilities for planning and expansion of their networks in regions with the greatest potential for photovoltaic generation.
|
8 |
Análise espacial do potencial fotovoltaico em telhados de residências usando modelagem hierárquica bayesiana /Villavicencio Gastelu, Joel January 2016 (has links)
Orientador: Antônio Padilha Feltrin / Resumo: No presente trabalho tem-se como objetivo estimar o potencial fotovoltaico devido à instalação de sistemas fotovoltaicos em telhados de áreas residenciais. Na estimação desse potencial foram consideradas quatro grandezas: o nível de irradiação solar, a área aproveitável de telhado para a instalação dos sistemas fotovoltaicos, a eficiência de conversão dos sistemas fotovoltaicos e as probabilidades de instalação dos sistemas fotovoltaicos, que caracterizam as preferências dos habitantes à instalação desses sistemas. Um modelo hierárquico bayesiano foi proposto para o cálculo das probabilidades de instalação dos sistemas fotovoltaicos. Nesse modelo bayesiano é estabelecida uma relação entre as probabilidades de instalação, as variáveis socioeconômicas e as interações entre as subáreas, através de um modelo linear generalizado misto. O cálculo do valor esperado das probabilidades de instalação foi realizado usando o método de Monte Carlo via cadeias de Markov. Os resultados do potencial fotovoltaico são apresentados através de mapas temáticos, que permitem a visualização da distribuição espacial do seu valor esperado. Esta informação pode ajudar as concessionárias de distribuição no planejamento e expansão de suas redes elétricas em regiões com maior potencial de geração fotovoltaica. / Abstract: The present work aims to estimate the photovoltaic potential for installing solar panel on the rooftop of residential areas. The estimation of this potential considers four quantities: the solar radiation level, rooftop availability for installation of photovoltaic systems, conversion efficiency of the photovoltaic systems and the probabilities for the installation of photovoltaic systems that characterize the preferences of the inhabitants to the installation of such systems. A bayesian hierarchical model is proposed to calculate the installation probabilities of photovoltaic systems. This bayesian model establishes a relation among the installation probabilities, socioeconomic variables and interactions between subareas, through a generalized linear mixed model. The calculation of expected value of installation probabilities in each subarea is performed using the Markov Chain Monte Carlo method. Photovoltaic potential results are presented through thematic maps that allow the visualization of the spatial distribution of its expected value. This information can help to distribution utilities for planning and expansion of their networks in regions with the greatest potential for photovoltaic generation. / Mestre
|
9 |
貝氏Weibull模式應用於加速壽命試驗吳雅婷, Wu,Ya-Ting Unknown Date (has links)
本文所探討的中心為貝氏模型運用於加速壽命試驗,並且假設受測項目之壽命服從Weibull分配。加速實驗環境有三種,其中第二種環境代表正常狀態,採用加速壽命試驗的方式涵蓋了三種:固定應力、漸進之逐步應力和變量曲線之逐步應力。對於先驗參數,並不是直接給予特定的值,而是透過專家評估,給定各種環境之下的產品可靠度之中位數或百分位數,再利用這些資訊經過數值運算解出先驗參數。資料的型態分成兩種,一為區間資料,另一為型一設限資料,透過蒙地卡羅法模擬出後驗分配,並且估計正常環境狀態的可靠度。 / This article develops a Bayes inference model for accelerated life testing assuming failure times at each stress level are Weibull distributed. Using the approach, there are three stressed to be used, and the three testing scenarios to be adapted are as follows:fixed-stress, progressive step-stress and profile step-stress. Prior information is used to indirectly define a multivariate prior distribution for the scale parameters at the various stress levels. The inference procedure accommodates both the interval data sampling strategy and type I censored sampling strategy for the collection of ALT test data. The inference procedure uses the well-known Markov Chain Monte Carlo methods to derive posterior approximations.
|
10 |
Contributions à la génération aléatoire pour des classes d'automates finis / Contributions to uniform random generation for finite automata classesJoly, Jean-Luc 23 March 2016 (has links)
Le concept d’automate, central en théorie des langages, est l’outil d’appréhension naturel et efficace de nombreux problèmes concrets. L’usage intensif des automates finis dans un cadre algorithmique s ’illustre par de nombreux travaux de recherche. La correction et l’ évaluation sont les deux questions fondamentales de l’algorithmique. Une méthode classique d’ évaluation s’appuie sur la génération aléatoire contrôlée d’instances d’entrée. Les travaux d´écrits dans cette thèse s’inscrivent dans ce cadre et plus particulièrement dans le domaine de la génération aléatoire uniforme d’automates finis.L’exposé qui suit propose d’abord la construction d’un générateur aléatoire d’automates à pile déterministes, real time. Cette construction s’appuie sur la méthode symbolique. Des résultats théoriques et une étude expérimentale sont exposés.Un générateur aléatoire d’automates non-déterministes illustre ensuite la souplesse d’utilisation de la méthode de Monte-Carlo par Chaînes de Markov (MCMC) ainsi que la mise en œuvre de l’algorithme de Metropolis - Hastings pour l’ échantillonnage à isomorphisme près. Un résultat sur le temps de mélange est donné dans le cadre général .L’ échantillonnage par méthode MCMC pose le problème de l’évaluation du temps de mélange dans la chaîne. En s’inspirant de travaux antérieurs pour construire un générateur d’automates partiellement ordonnés, on montre comment différents outils statistiques permettent de s’attaquer à ce problème. / The concept of automata, central to language theory, is the natural and efficient tool to apprehendvarious practical problems.The intensive use of finite automata in an algorithmic framework is illustrated by numerous researchworks.The correctness and the evaluation of performance are the two fundamental issues of algorithmics.A classic method to evaluate an algorithm is based on the controlled random generation of inputs.The work described in this thesis lies within this context and more specifically in the field of theuniform random generation of finite automata.The following presentation first proposes to design a deterministic, real time, pushdown automatagenerator. This design builds on the symbolic method. Theoretical results and an experimental studyare given.This design builds on the symbolic method. Theoretical results and an experimental study are given.A random generator of non deterministic automata then illustrates the flexibility of the Markov ChainMonte Carlo methods (MCMC) as well as the implementation of the Metropolis-Hastings algorithm tosample up to isomorphism. A result about the mixing time in the general framework is given.The MCMC sampling methods raise the problem of the mixing time in the chain. By drawing on worksalready completed to design a random generator of partially ordered automata, this work shows howvarious statistical tools can form a basis to address this issue.
|
Page generated in 0.0559 seconds