• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Statistical Modeling and Analysis of Bivariate Spatial-Temporal Data with the Application to Stream Temperature Study

Li, Han 04 November 2014 (has links)
Water temperature is a critical factor for the quality and biological condition of streams. Among various factors affecting stream water temperature, air temperature is one of the most important factors related to water temperature. To appropriately quantify the relationship between water and air temperatures over a large geographic region, it is important to accommodate the spatial and temporal information of the steam temperature. In this dissertation, I devote effort to several statistical modeling techniques for analyzing bivariate spatial-temporal data in a stream temperature study. In the first part, I focus our analysis on the individual stream. A time varying coefficient model (VCM) is used to study the relationship between air temperature and water temperature for each stream. The time varying coefficient model enables dynamic modeling of the relationship, and therefore can be used to enhance the understanding of water and air temperature relationships. The proposed model is applied to 10 streams in Maryland, West Virginia, Virginia, North Carolina and Georgia using daily maximum temperatures. The VCM approach increases the prediction accuracy by more than 50% compared to the simple linear regression model and the nonlinear logistic model. The VCM that describes the relationship between water and air temperatures for each stream is represented by slope and intercept curves from the fitted model. In the second part, I consider water and air temperatures for different streams that are spatial correlated. I focus on clustering multiple streams by using intercept and slope curves estimated from the VCM. Spatial information is incorporated to make clustering results geographically meaningful. I further propose a weighted distance as a dissimilarity measure for streams, which provides a flexible framework to interpret the clustering results under different weights. Real data analysis shows that streams in same cluster share similar geographic features such as solar radiation, percent forest and elevation. In the third part, I develop a spatial-temporal VCM (STVCM) to deal with missing data. The STVCM takes both spatial and temporal variation of water temperature into account. I develop a novel estimation method that emphasizes the time effect and treats the space effect as a varying coefficient for the time effect. A simulation study shows that the performance of the STVCM on missing data imputation is better than several existing methods such as the neural network and the Gaussian process. The STVCM is also applied to all 156 streams in this study to obtain a complete data record. / Ph. D.
2

Přístupy k shlukování funkčních dat / Approaches to Functional Data Clustering

Pešout, Pavel January 2007 (has links)
Classification is a very common task in information processing and important problem in many sectors of science and industry. In the case of data measured as a function of a dependent variable such as time, the most used algorithms may not pattern each of the individual shapes properly, because they are interested only in the choiced measurements. For the reason, the presented paper focuses on the specific techniques that directly address the curve clustering problem and classifying new individuals. The main goal of this work is to develop alternative methodologies through the extension to various statistical approaches, consolidate already established algorithms, expose their modified forms fitted to demands of clustering issue and compare some efficient curve clustering methods thanks to reported extensive simulated data experiments. Last but not least is made, for the sake of executed experiments, comprehensive confrontation of effectual utility. Proposed clustering algorithms are based on two principles. Firstly, it is presumed that the set of trajectories may be probabilistic modelled as sequences of points generated from a finite mixture model consisting of regression components and hence the density-based clustering methods using the Maximum Likehood Estimation are investigated to recognize the most homogenous partitioning. Attention is paid to both the Maximum Likehood Approach, which assumes the cluster memberships to be some of the model parameters, and the probabilistic model with the iterative Expectation-Maximization algorithm, that assumes them to be random variables. To deal with the hidden data problem both Gaussian and less conventional gamma mixtures are comprehended with arranging for use in two dimensions. To cope with data with high variability within each subpopulation it is introduced two-level random effects regression mixture with the ability to let an individual vary from the template for its group. Secondly, it is taken advantage of well known K-Means algorithm applied to the estimated regression coefficients, though. The task of the optimal data fitting is devoted, because K-Means is not invariant to linear transformations. In order to overcome this problem it is suggested integrating clustering issue with the Markov Chain Monte Carlo approaches. What is more, this paper is concerned in functional discriminant analysis including linear and quadratic scores and their modified probabilistic forms by using random mixtures. Alike in K-Means it is shown how to apply Fisher's method of canonical scores to the regression coefficients. Experiments of simulated datasets are made that demonstrate the performance of all mentioned methods and enable to choose those with the most result and time efficiency. Considerable boon is the facture of new advisable application advances. Implementation is processed in Mathematica 4.0. Finally, the possibilities offered by the development of curve clustering algorithms in vast research areas of modern science are examined, like neurology, genome studies, speech and image recognition systems, and future investigation with incorporation with ubiquitous computing is not forbidden. Utility in economy is illustrated with executed application in claims analysis of some life insurance products. The goals of the thesis have been achieved.

Page generated in 0.1641 seconds