• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Statistical Modeling and Analysis of Bivariate Spatial-Temporal Data with the Application to Stream Temperature Study

Li, Han 04 November 2014 (has links)
Water temperature is a critical factor for the quality and biological condition of streams. Among various factors affecting stream water temperature, air temperature is one of the most important factors related to water temperature. To appropriately quantify the relationship between water and air temperatures over a large geographic region, it is important to accommodate the spatial and temporal information of the steam temperature. In this dissertation, I devote effort to several statistical modeling techniques for analyzing bivariate spatial-temporal data in a stream temperature study. In the first part, I focus our analysis on the individual stream. A time varying coefficient model (VCM) is used to study the relationship between air temperature and water temperature for each stream. The time varying coefficient model enables dynamic modeling of the relationship, and therefore can be used to enhance the understanding of water and air temperature relationships. The proposed model is applied to 10 streams in Maryland, West Virginia, Virginia, North Carolina and Georgia using daily maximum temperatures. The VCM approach increases the prediction accuracy by more than 50% compared to the simple linear regression model and the nonlinear logistic model. The VCM that describes the relationship between water and air temperatures for each stream is represented by slope and intercept curves from the fitted model. In the second part, I consider water and air temperatures for different streams that are spatial correlated. I focus on clustering multiple streams by using intercept and slope curves estimated from the VCM. Spatial information is incorporated to make clustering results geographically meaningful. I further propose a weighted distance as a dissimilarity measure for streams, which provides a flexible framework to interpret the clustering results under different weights. Real data analysis shows that streams in same cluster share similar geographic features such as solar radiation, percent forest and elevation. In the third part, I develop a spatial-temporal VCM (STVCM) to deal with missing data. The STVCM takes both spatial and temporal variation of water temperature into account. I develop a novel estimation method that emphasizes the time effect and treats the space effect as a varying coefficient for the time effect. A simulation study shows that the performance of the STVCM on missing data imputation is better than several existing methods such as the neural network and the Gaussian process. The STVCM is also applied to all 156 streams in this study to obtain a complete data record. / Ph. D.
2

Semiparametric Varying Coefficient Models for Matched Case-Crossover Studies

Ortega Villa, Ana Maria 23 November 2015 (has links)
Semiparametric modeling is a combination of the parametric and nonparametric models in which some functions follow a known form and some others follow an unknown form. In this dissertation we made contributions to semiparametric modeling for matched case-crossover data. In matched case-crossover studies, it is generally accepted that the covariates on which a case and associated controls are matched cannot exert a confounding effect on independent predictors included in the conditional logistic regression model. Any stratum effect is removed by the conditioning on the fixed number of sets of the case and controls in the stratum. However, some matching covariates such as time, and/or spatial location often play an important role as an effect modification. Failure to include them makes incorrect statistical estimation, prediction and inference. Hence in this dissertation, we propose several approaches that will allow the inclusion of time and spatial location as well as other effect modifications such as heterogeneous subpopulations among the data. To address modification due to time, three methods are developed: the first is a parametric approach, the second is a semiparametric penalized approach and the third is a semiparametric Bayesian approach. We demonstrate the advantage of the one stage semiparametric approaches using both a simulation study and an epidemiological example of a 1-4 bi-directional case-crossover study of childhood aseptic meningitis with drinking water turbidity. To address modifications due to time and spatial location, two methods are developed: the first one is a semiparametric spatial-temporal varying coefficient model for a small number of locations. The second method is a semiparametric spatial-temporal varying coefficient model, and is appropriate when the number of locations among the subjects is medium to large. We demonstrate the accuracy of these approaches by using simulation studies, and when appropriate, an epidemiological example of a 1-4 bi-directional case-crossover study. Finally, to explore further effect modifications by heterogeneous subpopulations among strata we propose a nonparametric Bayesian approach constructed with Dirichlet process priors, which clusters subpopulations and assesses heterogeneity. We demonstrate the accuracy of our approach using a simulation study, as well a an example of a 1-4 bi-directional case-crossover study. / Ph. D.
3

Three Essays on Estimation and Testing of Nonparametric Models

Ma, Guangyi 2012 August 1900 (has links)
In this dissertation, I focus on the development and application of nonparametric methods in econometrics. First, a constrained nonparametric regression method is developed to estimate a function and its derivatives subject to shape restrictions implied by economic theory. The constrained estimators can be viewed as a set of empirical likelihood-based reweighted local polynomial estimators. They are shown to be weakly consistent and have the same first order asymptotic distribution as the unconstrained estimators. When the shape restrictions are correctly specified, the constrained estimators can achieve a large degree of finite sample bias reduction and thus outperform the unconstrained estimators. The constrained nonparametric regression method is applied on the estimation of daily option pricing function and state-price density function. Second, a modified Cumulative Sum of Squares (CUSQ) test is proposed to test structural changes in the unconditional volatility in a time-varying coefficient model. The proposed test is based on nonparametric residuals from local linear estimation of the time-varying coefficients. Asymptotic theory is provided to show that the new CUSQ test has standard null distribution and diverges at standard rate under the alternatives. Compared with a test based on least squares residuals, the new test enjoys correct size and good power properties. This is because, by estimating the model nonparametrically, one can circumvent the size distortion from potential structural changes in the mean. Empirical results from both simulation experiments and real data applications are presented to demonstrate the test's size and power properties. Third, an empirical study of testing the Purchasing Power Parity (PPP) hypothesis is conducted in a functional-coefficient cointegration model, which is consistent with equilibrium models of exchange rate determination with the presence of trans- actions costs in international trade. Supporting evidence of PPP is found in the recent float exchange rate era. The cointegration relation of nominal exchange rate and price levels varies conditioning on the real exchange rate volatility. The cointegration coefficients are more stable and numerically near the value implied by PPP theory when the real exchange rate volatility is relatively lower.

Page generated in 0.0773 seconds