Spelling suggestions: "subject:"biunctional food carriers"" "subject:"5functional food carriers""
1 |
Silica based materials for the encapsulation of β-Galactosidase / Encapsulation de β-Galactosidase dans des matériaux silicatesPavel-Licsandru, Ileana-Alexandra 29 November 2017 (has links)
L’ingénierie des compléments alimentaires solides offre plusieurs avantages dans la formulation industrielle des produits alimentaires, en termes de production, stockage, et manipulation. Pour ces raisons, l’objectif de cette thèse était d’élaborer des ‘cargos’ bio-réactifs, permettant l’encapsulation d’une enzyme exogène capable de réaliser la réaction d’hydrolyse des molécules de lactose. Aujourd’hui il est établi que les symptômes caractéristiques de l’intolérance au lactose sont associés à une carence en lactase dans le gros intestine. Ainsi, fournir au corps humain de la lactase est l’application ciblée par ce travail, par la conception de matériaux siliciques comme support d’encapsulation. En général, les types de cargos développés doivent surmonter les conditions gastriques pour libérer l’enzyme dans le gros intestine. La silice poreuse amorphe est un matériau inorganique non-toxique qui assure une bonne protection dans des conditions acides et permet une libération contrôlée au pH légèrement basique du colon. L’utilisation de silice amorphe poreuse permet à coût réduit d’obtenir une structure intrinsèque contrôlée (forme, taille particulaire, diamètre du pore) et une chimie de surface modifiable. En accord avec les objectifs principaux, quatre stratégies d’encapsulation bio-adaptées ont été étudiées comme de potentiels voies pour la production de compléments alimentaires solides d’intérêt pour le traitement de l’intolérance au lactose : (i) immobilisation de l’enzyme par adsorption dans des matériaux siliciques meso-macroporeux pré-synthétises, (ii) immobilisation de l’enzyme sur des particules de silice faiblement poreuses recouvertes par des liposomes, (iii) encapsulation de l’enzyme dans des nanoparticules de lipides solides (SLNs), (iv) encapsulation de l’enzyme dans une matrice de biopolymère recouvert d’une coque de silice mésoporeuse / The engineering of solid dietary supplements provides several advantages in the industrial formulation of food products, in terms of its production, storage and handling. Thereby, the goal of this doctoral work is to design bio-responsive carriers for the encapsulation of an exogenous enzyme able to catalyze the hydrolysis of lactose towards simple sugar molecules. In fact, there is a consensus that the onset of symptoms characteristic of lactose intolerance are associated with lactase deficiency in the small intestine. Providing the organism with exogenous lactase is the underlying application targeted by this work through the design of silicabased materials for encapsulation. The different types of bio-carriers developed had to overcome the simulated gastric conditions in order to release active enzyme molecules in the small intestine. Amorphous porous silica is a very good and non-toxic component affording protection versus acidic conditions, while providing controlled release. This inorganic material approved by the US Food and Drug Administration (FDA) has a relatively low cost, and presents a controlled structure (shape, size, pore diameter), as well as tunable surface chemistry. In agreement with the main objectives, four bio-adapted encapsulation strategies were investigated as potential routes to produce solid dietary supplements for lactose intolerance treatment: (i) physical entrapment of the enzyme in pre-synthesized meso-macroporous silica materials, (ii) physical entrapment of the enzyme in low porosity silica particles coated by liposomes, (iii) encapsulation of the enzyme into thermosensitive solid lipid nanoparticles (SLNs) (iv) encapsulation of the enzyme into a biopolymer matrix coated in a mesoporous silica shell
|
2 |
Encapsulation of Lactobacillus rhamnosus GG into hybrid alginate-silica microparticles / Encapsulation de Lactobacillus rhamnosus GG dans des microparticules hybrides composées d’alginate et de siliceHaffner, Fernanda Bianca 07 July 2017 (has links)
L’administration d’aliments fonctionnels contenant des cellules probiotiques est une des voies de rétablissement de l'équilibre du microbiota. Pour assurer la protection des probiotiques pendant la transformation des aliments et le passage gastro-intestinal, l'encapsulation est essentielle. Nous proposons ici des supports hybrides à base de silice en tant que nouveaux systèmes d’encapsulation de probiotiques. Lactobacillus rhamnosus GG (LGG) a été choisi comme modèle de bactéries probiotiques et l'alginate comme polymère prébiotique. Deux types de supports ont été préparés, soit par émulsification, soit par électrospraying: (i) des billes hybrides de 10-30 μm dans lesquelles les bactéries étaient en contact direct avec un mélange d'alginate et de silice et (ii) des particules cœur-couronne de 200-600 μm dans lesquelles les bactéries sont d'abord encapsulées dans un gel d'alginate, puis recouvertes d'une couche de silice. La viabilité des LGG a été efficacement maintenue seulement dans les particules cœur-couronne, dans lesquelles LGG n’ont pas était directement exposées à la silice. Ces prototypes cargo ont permis la protection de LGG pendant le stockage dans la bière ou le jus de pomme, ainsi que pendant le passage à travers le tractus gastro-intestinal. En outre, les LGG libérées dans un écosystème fécal se sont multipliées au détriment des autres membres de la communauté de Lactobacilli. Cette étude offre donc une preuve de concept quant à la potentialité des systèmes hybrides silice/biopolymère pour l'administration orale de bactéries probiotiques / One way to reestablish the microbiota equilibrium is to administrate a functional food containing probiotic cells. To insure protection of the living matter during the food processing and the gastrointestinal passage, encapsulation is essential. Herein we propose silica-based hybrid carriers as new probiotic delivery systems. Lactobacillus rhamnosus GG (LGG) was chosen as a model probiotic bacteria and alginate as prebiotic polymer. Two types of carriers were prepared either by emulsification or by electrospraying: (i) hybrid beads of 10-30 m in which the bacteria was in direct contact with a mixture of alginate and silica and (ii) core-shell beads of 200-600 m in which the bacteria are first embedded in an aqueous core of alginate, then coated with a silica shell. The viability of LGG was efficiently maintained only in core-shell particles, in which LGG was not directly exposed to silica. Those core-shell prototype carriers allowed the protection of LGG during storage in beer or apple juice, and during the passage through the gastrointestinal tract. Additionally the LGG released in the colon outcompete other members of the Lactobacilli community and it was able to thrive within a fecal ecosystem. This study offers thus a proof of concept for the potential use of hybrid silica/biopolymer systems in oral delivery of probiotic bacteria
|
Page generated in 0.1182 seconds