Spelling suggestions: "subject:"biunctional limit theorem"" "subject:"5functional limit theorem""
1 |
Asymptotic results on nearly nonstationary processes / Beveik nestacionarių procesų asimptotiniai rezultataiMarkevičiūtė, Jurgita 29 October 2013 (has links)
We study some Hölderian functional central limit theorems for the polygonal partial sum processes built on a first order nearly nonstationary autoregressive process and its least squares residuals Innovations are i.i.d. centered and at least square-integrable innovations. Two types of models are considered. For the first type model we prove that the limiting process depends on Ornstein – Uhlenbeck one. In the second type model, the convergence to Brownian motion is established in Hölder space in terms of the rate of coefficient and the integrability of the residuals. We also investigate some epidemic change in the innovations of the first order nearly nonstationary autoregressive process . We build the alpha-Hölderian uniform increments statistics based on the observations and on the least squares residuals to detect the short epidemic change in the process under consideration. Under the assumptions for innovations we find the limit of the statistics under null hypothesis, some conditions of consistency and we perform a test power analysis. / Disertacijoje nagrinėjami dalinių sumų laužčių procesai sudaryti iš pirmos eilės beveik nestacionaraus proceso bei jo mažiausių kvadratų liekanų. Inovacijos yra nepriklausomi, vienodai pasiskirstę ir bent kvadratu integruojami atsitiktiniai dydžiai su nuliniu vidurkiu. Įrodomos funkcinės ribinės teoremos šiems laužčių procesams Hiolderio erdvėje. Nagrinėjami du beveik nestacionaraus proceso atvejai. Vienu atveju įrodoma, kad ribinis procesas priklauso nuo Ornsteino–Uhlenbecko proceso. Kitu atveju, įrodomas konvergavimas į Brauno judesį Hiolderio erdvėje, atsižvelgiant į koeficiento divergavimo greitį bei inovacijų integruojamumą. Toliau nagrinėjamas epideminio pasikeitimo modelis beveik nestacionaraus pirmos eilės autoregresinio proceso inovacijoms. Nagrinėjami du modeliai. Iš stebėjimų bei liekanų konstruojama tolydžiųjų prieaugių alpha-Hiolderio statistika. Remiantis prielaidomis inovacijoms, randama statistikos ribinis procesas prie nulinės hipotezės, suderinamumo sąlygos, atliekama galios analizė.
|
2 |
Beveik nestacionarių procesų asimptotiniai rezultatai / Asymptotic results on nearly nonstationary processesMarkevičiūtė, Jurgita 29 October 2013 (has links)
Disertacijoje nagrinėjami dalinių sumų laužčių procesai sudaryti iš pirmos eilės beveik nestacionaraus proceso bei jo mažiausių kvadratų liekanų. Inovacijos yra nepriklausomi, vienodai pasiskirstę ir bent kvadratu integruojami atsitiktiniai dydžiai su nuliniu vidurkiu. Įrodomos funkcinės ribinės teoremos šiems laužčių procesams Hiolderio erdvėje. Nagrinėjami du beveik nestacionaraus proceso atvejai. Vienu atveju įrodoma, kad ribinis procesas priklauso nuo Ornsteino–Uhlenbecko proceso. Kitu atveju, įrodomas konvergavimas į Brauno judesį Hiolderio erdvėje, atsižvelgiant į koeficiento divergavimo greitį bei inovacijų integruojamumą. Toliau nagrinėjamas epideminio pasikeitimo modelis beveik nestacionaraus pirmos eilės autoregresinio proceso inovacijoms. Nagrinėjami du modeliai. Iš stebėjimų bei liekanų konstruojama tolydžiųjų prieaugių alpha-Hiolderio statistika. Remiantis prielaidomis inovacijoms, randama statistikos ribinis procesas prie nulinės hipotezės, suderinamumo sąlygos, atliekama galios analizė. / We study some Hölderian functional central limit theorems for the polygonal partial sum processes built on a first order nearly nonstationary autoregressive process and its least squares residuals Innovations are i.i.d. centered and at least square-integrable innovations. Two types of models are considered. For the first type model we prove that the limiting process depends on Ornstein – Uhlenbeck one. In the second type model, the convergence to Brownian motion is established in Hölder space in terms of the rate of coefficient and the integrability of the residuals. We also investigate some epidemic change in the innovations of the first order nearly nonstationary autoregressive process . We build the alpha-Hölderian uniform increments statistics based on the observations and on the least squares residuals to detect the short epidemic change in the process under consideration. Under the assumptions for innovations we find the limit of the statistics under null hypothesis, some conditions of consistency and we perform a test power analysis.
|
3 |
Mehrdimensionale Change-Point-Schätzung mit U-StatistikenDöring, Maik 05 April 2007 (has links) (PDF)
Wir betrachten ein mehrdimensionales Change-Point-Problem. Seien X1;n; : : : ;Xn;n unabhängige Zufallselemente bei denen q, q 2 N, Verteilungswechsel auftreten. Dass heisst, es existiert ein Vektor µ = (µ1; : : : ; µq) 2 Rq mit 0 = µ0 < µ1 < ¢ ¢ ¢ < µq < µq+1 = 1 sowie Verteilungen º0;n; : : : ; ºq;n, so dass Xj;n für [nµi] < j · [nµi+1] die Verteilung ºi;n besitzt. Wir führen eine Klasse von Schätzer ^µn für den unbekannten Change-Point µ ein. Diese sind Maximalstellen von gewichteten q + 1-Stichproben U-Statistiken. Das Ziel der Arbeit ist die Un- tersuchung des asymptotischen Verhalten der Schätzer.
|
4 |
Mehrdimensionale Change-Point-Schätzung mit U-StatistikenDöring, Maik 02 April 2007 (has links)
Wir betrachten ein mehrdimensionales Change-Point-Problem. Seien X1;n; : : : ;Xn;n unabhängige Zufallselemente bei denen q, q 2 N, Verteilungswechsel auftreten. Dass heisst, es existiert ein Vektor µ = (µ1; : : : ; µq) 2 Rq mit 0 = µ0 < µ1 < ¢ ¢ ¢ < µq < µq+1 = 1 sowie Verteilungen º0;n; : : : ; ºq;n, so dass Xj;n für [nµi] < j · [nµi+1] die Verteilung ºi;n besitzt. Wir führen eine Klasse von Schätzer ^µn für den unbekannten Change-Point µ ein. Diese sind Maximalstellen von gewichteten q + 1-Stichproben U-Statistiken. Das Ziel der Arbeit ist die Un- tersuchung des asymptotischen Verhalten der Schätzer.
|
5 |
Modélisation stochastique de systèmes biologiques multi-échelles et inhomogènes en espace / Stochastic Modeling of Multiscale Biological Systems with Spatial InhomogeneityNguepedja Nankep, Mac jugal 22 March 2018 (has links)
Les besoins grandissants de prévisions robustes pour des systèmes complexes conduisent à introduire des modèles mathématiques considérant un nombre croissant de paramètres. Au temps s'ajoutent l'espace, l'aléa, les échelles de dynamiques, donnant lieu à des modèles stochastiques multi-échelles avec dépendance spatiale (modèles spatiaux). Cependant, l'explosion du temps de simulation de tels modèles complique leur utilisation. Leur analyse difficile a néanmoins permis, pour les modèles à une échelle, de développer des outils puissants: loi des grands nombres (LGN), théorème central limite (TCL), ..., puis d'en dériver des modèles simplifiés et algorithmes accélérés. Dans le processus de dérivation, des modèles et algorithmes dits hybrides ont vu le jour dans le cas multi-échelle, mais sans analyse rigoureuse préalable, soulevant ainsi la question d'approximation hybride dont la consistance constitue l'une des motivations principales de cette thèse.En 2012, Crudu, Debussche, Muller et Radulescu établissent des critères d'approximation hybride pour des modèles homogènes en espace de réseaux de régulation de gènes. Le but de cette thèse est de compléter leur travail et le généraliser à un cadre spatial.Nous avons développé et simplifié différents modèles, tous des processus de Markov de sauts pures à temps continu. La démarche met en avant, d'une part, des conditions d'approximations déterministes par des solutions d'équations d'évolution (type réaction-advection-diffusion), et, d'autre part, des conditions d'approximations hybrides par des processus stochastiques hybrides. Dans le cadre des réseaux de réactions biochimiques, un TCL est établi. Il correspond à une approximation hybride d'un modèle homogène simplifié à deux échelles de temps (suivant Crudu et al.). Puis, une LGN est obtenue pour un modèle spatial à deux échelles de temps. Ensuite, une approximation hybride est établie pour un modèle spatial à deux échelles de dynamique en temps et en espace. Enfin, des comportements asymptotiques en grandes populations et en temps long sont présentés pour un modèle d'épidémie de choléra, via une LGN suivie d'une borne supérieure pour les sous-ensembles compacts, dans le cadre d'un principe de grande déviation (PGD) correspondant.À l'avenir, il serait intéressant, entre autres, de varier la géométrie spatiale, de généraliser le TCL, de compléter les estimations du PGD, et d'explorer des systèmes complexes issus d'autres domaines. / The growing needs of precise predictions for complex systems lead to introducing stronger mathematical models, taking into account an increasing number of parameters added to time: space, stochasticity, scales of dynamics. Combining these parameters gives rise to spatial --or spatially inhomogeneous-- multiscale stochastic models. However, such models are difficult to study and their simulation is extremely time consuming, making their use not easy. Still, their analysis has allowed one to develop powerful tools for one scale models, among which are the law of large numbers (LLN) and the central limit theorem (CLT), and, afterward, to derive simpler models and accelrated algorithms. In that deduction process, the so-called hybrid models and algorithms have arisen in the multiscale case, but without any prior rigorous analysis. The question of hybrid approximation then shows up, and its consistency is a particularly important motivation of this PhD thesis.In 2012, criteria for hybrid approximations of some homogeneous regulation gene network models were established by Crudu, Debussche, Muller and Radulescu. The aim of this PhD thesis is to complete their work and generalize it afterward to a spatial framework.We have developed and simplified different models. They all are time continuous pure jump Markov processes. The approach points out the conditions allowing on the the one hand deterministic approximations by solutions of evolution equations of type reaction-advection-diffusion, and, on the other hand, hybrid approximations by hybrid stochastic processes. In the field of biochemical reaction networks, we establish a CLT. It corresponds to a hybrid approximation of a simplified homogeneous model (due to Crudu et al.). Then a LLN is obtained for a spatial model with two time scales. Afterward, a hybrid approximation is established, for a two time-space scales spatial model. Finally, the asymptotic behaviour in large population and long time are respectively presented for a model of cholera epidemic, through a LLN followed by the upper bound for compact sets, in the context of a corresponding large deviation principle (LDP).Interesting future works would be, among others, to study other spatial geometries, to generalize the CLT, to complete the LDP estimates, and to study complex systems from other fields.
|
Page generated in 0.1113 seconds