• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Functional Stability and Learning in the Dorsolateral Prefrontal Cortex

Greenberg, Paul Arthur January 2005 (has links)
"Stable multi-day recordings from chronically implanted microelectrodes within the dorsolateral prefrontal cortex of two monkeys performing three Go/NoGo visual discrimination tasks (one requiring well-learned responses, two requiring learning) demonstrated that the majority of prefrontal neurons were 'functionally stable'. Action potentials of 94 neurons were stable over 2-9 days; 66/94 (70%) of these cells responded each day, 22/94 (23%) never responded significantly, and 6/94 (6%) responded one day but not the next. Of 66 responsive neurons, 55 were selective for either Go or NoGo trials, individual stimuli, or eye movements." (Greenberg and Wilson, 2004) Selectivity was maintained, for 46/55 neurons across all recording days. Response strength (baseline vs. post-stimulation firing rates) and event-related response timing also displayed stability. Stability generalized across neuronal response type suggesting that functional stability is a general property. Long-term recordings from other studies supported similar conclusions suggesting that neurons throughout the brain are functionally stable. Single-day recordings from different neurons within the same cortical regions demonstrated neuronal response flexibility while monkeys learned associations among visual cues, and Go/NoGo behavioral responses. Of 116 neurons, 57 (49%) displayed significant change points in firing rates during novel learning (n=18), reversal learning (n=12), or both tasks (n=27). Six of 57(10.5%) neurons had firing rates changes prior to learning and might have been causally related to the monkeys' behavioral changes. However, only 18/152 (12%) of the total number of firing rate changes occurred prior to the monkeys' learning meaning that most appeared to be the consequences of learning rather than the causes.
2

Exploring the Use of a Jumps Protocol as a Return-To-Play Guideline Following Anterior Cruciate Ligament Reconstruction

Johnston, Brian D 01 May 2014 (has links)
Objective: To explore currently accepted return-to-play tests and a jumps protocol in a single subject design following anterior cruciate ligament reconstruction. Background: The subject sustained 2 ruptures of the ACL in the left knee in a 12-month period. Both events were noncontact injuries occurring on the landing phase of a jump. A physical exam and magnetic resonance imaging were performed for both injuries by multiple orthopedic surgeons in the United States (1st rupture) and in Brazil (1st & 2nd rupture) to diagnose the injury. Treatment: Following the initial injury the subject attended 2 rehabilitation sessions per week for 16 weeks with an outpatient physical therapy clinic in the US. After the second surgery the athlete returned to the US and received treatment 6 days per week for 8 months with the University sports medicine staff. Return-to-play testing: Along with the hop test and an isokinetic knee flexion/extension test as a general protocol to determine the return-to-play, a jumps protocol to assess bilateral asymmetry and performance was also used. The symmetry index score (SI) was used to evaluate the magnitude of asymmetry. Conclusions: Following ACL reconstruction, objective data from the Hop Test, Isokinetic Test and Jumps Protocol can assist the healthcare provider in determining return-to-play status.
3

Thermomechanical Cyclic Response of TiNiPd High-Temperature Shape Memory Alloys

Atli, Kadri 2011 August 1900 (has links)
TiNiPd high-temperature shape memory alloys (HTSMAs) have attracted considerable attention as potential solid-state actuators capable of operating at temperatures up to 500 °C, exhibiting excellent corrosion resistance, adequate ductility levels and significant strain recovery under both constrained and unconstrained thermomechanical conditions. During operation, these actuators may be subjected to multiple cycles and from an application point of view, the functional stability, i.e. conservation of original actuator dimensions and transformation temperatures during repeated employment, is of considerable importance. This study addresses the issue of functional stability in a model HTSMA, Ti50.5Ni24.5Pd25, for its use as a compact solid-state actuator. Since the primary reason for functional instability is the creation of lattice defects (dislocations, vacancies, etc.) during repeated transformation cycles, several methods were successfully undertaken to improve the functional stability through inhibiting the generation of these defects. Solid-solution strengthening through Sc microalloying and thermomechanical treatments via severe plastic deformation were the two approaches used to strengthen the HTSMA against defect generation. Thermal cycling the HTSMA under stress was the third method to voluntarily introduce defects into the microstructure such that further defect generation during application would be impeded. Overall, severe plastic deformation was found to be more efficient than other strengthening methods in improving the functional stability of TiNiPd HTSMA, yet it brought about disadvantages such as reduction in transformation strain and transformation temperatures. While functional instability is due to the creation of lattice defects, the generation of these defects is mainly controlled by the crystallographic incompatibility between martensitically transforming phases and the strength levels for plastic deformation. It was shown that TiNiPd HTSMAs, which exhibited martensitic transformation from a cubic (B2) to orthorhombic (B19) symmetry, illustrated better compatibility and thus better functional stability levels compared to TiNi SMAs, which had a B2 to monoclinic (B19’) transition. Although crystallographic incompatibility seems to be the governing factor for the functional stability of the TiNiPd HTSMA, the strength differential between the onset of plastic deformation and local constraint due to the martensitic transformation was also found to be an influential factor determining the overall stable behavior. Functional stability was also investigated for the two-way shape memory effect (TWSME) in TiNiPd HTSMAs. Better strength and compatibility levels compared to TiNi SMAs were also reflected in the TWSME characteristics in the form of enhanced stability under stress-free thermal cycling. The stability during constrained thermal cycling was not as good and TWSME degraded rapidly while doing work against an opposing stress. Nevertheless, work output levels were much higher as compared to those obtained from conventional TiNi and Cu-based SMAs.

Page generated in 0.0817 seconds