• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 588
  • 161
  • 59
  • 56
  • 11
  • 8
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 1073
  • 1073
  • 1064
  • 203
  • 196
  • 168
  • 152
  • 150
  • 150
  • 141
  • 139
  • 129
  • 126
  • 114
  • 104
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

DEVELOPING HIGH-PERFORMANCE GeTe AND SnTe-BASED THERMOELECTRIC MATERIALS

Yang, Zan January 2022 (has links)
This dissertation covers the study of the thermoelectric properties of GeTe and SnTe. The goal of this research is to develop high-performance lead-free thermoelectric materials that can replace PbTe-based systems so that thermoelectric technology could be bring into real application. During the study, extensive investigations on the electrical and thermal transport behaviors were conducted both experimentally and theoretically. In Chapter 1 ~ 3, the origin of thermoelectricity, modelling and characterization methods are discussed in detail. In Chapter 4, study on the thermoelectric properties of Bi, Zn and In co-doped GeTe was presented. Initial doping with Bi enhanced the performance by tuning the electronic properties and bringing down the thermal conductivity. Subsequent Zn doping permitted to maintain the high power factor by increasing carrier mobility and reducing carrier concentration. Subsequent In doping boosted the density of state effective mass. A peak zT value of 2.06 and an average zT value of 1.30 have been achieved in (Ge0.97Zn0.02In0.01Te)0.97(Bi2Te3)0.03. In Chapter 5, we thoroughly investigated the transport properties of SnTe-Sb2Te3 alloying system, provided useful insight of the mechanism of the enhanced Seebeck coefficient. To also overcome the poor carrier mobility, Pb compensation was performed which effectively optimized the carrier mobility. Meanwhile, Pb compensation broke the charge balance, allowing Sb to precipitate out of the structure. These second-phase particles provided additional source of phonon scattering, effectively suppressing the lattice thermal conductivity. As a result, a peak zT of 1.1 at 778K and an average zT of 0.56 from 300K to 778K was achieved in (Sn0.98Ge0.05Te)0.91 (Sb2Pb0.5Te)0.09, which is one of the best SnTe-based thermoelectric systems. / Thesis / Master of Science (MSc) / Thermoelectric materials can generate energy from temperature gradient, making them potential solutions for the escalating energy crisis. The state-of-the-art thermoelectric material is PbTe which shows outstanding performance and high stability. However, the toxicity of Pb element limits its practical application. It is the purpose of this work to develop high-performance GeTe and SnTe-based thermoelectrics to reduce the usage of PbTe. Combining theoretical calculations and experimental characterizations, detailed investigation on the transport properties, crystal structure and microstructure were performed on both GeTe and SnTe. Relations between their thermoelectric properties and their composition, synthesis method and microstructure were revealed. This work paves the path for the development of environmentally friendly and high-performance thermoelectric systems.
102

Electronic and optical properties of two-dimensional semiconductors: A study of group VI and VII transition metal dichalcogenides and phosphorene-like materials using density-functional and many-body Green’s-function methods / Electronic and optical properties of two-dimensional materials

Laurien, Magdalena January 2021 (has links)
In the search for nano-scale, highly customizable materials for next-generation electronic devices, two-dimensional (2D) materials have generated much interest. 2D materials have complex, layer-dependent optical and electronic properties of which many aspects remain yet to be explored and fully understood. The aim of this thesis was to investigate and explain optoelectronic properties of several 2D materials systems towards device design. This was accomplished using predictive physical modelling at the density functional theory level (DFT) as well as many-body theory (GW+BSE). The optical transitions of bulk ReS2 and ReSe2 were studied using DFT in comparison with experiment. We found that the orbital composition of the band edges determined the sign of the pressure coefficient of the optical gap. Our results provide a step towards understanding the perceived layer-independence of the optical properties of ReS2 and ReSe2. The exciton landscape of MoS2 monolayer was explored in detail using many-body theory (GW+BSE). We found dark excitons very close to bright excitons and even lower in energy. Our results help reverse the common assumption that the lowest-energy exciton in MoS2 is bright. The ideal band offset between recently predicted monolayers of the CaP3 family was predicted using GW theory. We observed chemical trends in the band offsets and explained their origin. Our results serve as indicators for heterojunction design with these novel materials. The effective mass of a test set of eighteen semiconductors including several 2D materials was calculated using DFT with semi-local and non-local hybrid exchange-functionals and compared for accuracy with respect to experimental data. Our analysis details the effect of the nonlocal exchange potential on the accuracy of the effective mass. Our results give guidelines for high-throughput calculations of the effective mass for different material classes, including 2D materials. / Thesis / Doctor of Philosophy (PhD)
103

Enantiospecificity of Chiral Pt Nanostructures Grown on Chiral SrTiO3 Surfaces

Yuk, Simuck Francis 19 May 2015 (has links)
No description available.
104

Theoretical Estimation of pKa’s of Pyrimidines and Related Heterocycles

Wessner, Rachael Ann 05 August 2016 (has links)
No description available.
105

Computational investigations of cytochrome P450 aromatase catalysis and biological evaluation of isoflavone aromatase inhibitors

Hackett, John C. 22 December 2004 (has links)
No description available.
106

Structure and reactivity studies of environmentally relevant actinide-containing species using relativistic density functional theory

Sonnenberg, Jason Louis 24 August 2005 (has links)
No description available.
107

Computational studies of combustion processes and oxygenated species

Hayes, Carrigan J. 24 August 2007 (has links)
No description available.
108

Time-Dependent Density-Functional Description of the <sup>1</sup>L<sub>a</sub> State in Polycyclic Aromatic Hydrocarbons

Richard, Ryan M. 20 July 2011 (has links)
No description available.
109

Developments of Density Functional Theory and Integral Equation Theory for Solvation and Phase Equilibrium / 溶媒和と相平衡についての密度汎関数理論と積分方程式理論の開発

Yagi, Tomoaki 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23918号 / 工博第5005号 / 新制||工||1781(附属図書館) / 京都大学大学院工学研究科分子工学専攻 / (主査)教授 佐藤 啓文, 教授 作花 哲夫, 教授 佐藤 徹 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
110

Weighted Density Approximations for Kohn-Sham Density Functional Theory

Cuevas-Saavedra, Rogelio 10 1900 (has links)
<p>Approximating the exchange-correlation energy in density functional theory (DFT) is a crucial task. As the only missing element in the Kohn-Sham DFT, the search for better exchange-correlation functionals has been an active field of research for fifty years. Many models and approximations are known and they can be summarized in what is known as the Jacob’s ladder. All the functionals in that ladder are local in the sense that they rely on the information of only one electronic coordinate. That is, even though the exchange-correlation hole, the cornerstone in density functional theory, is a two-electron coordinate quantity, one of the coordinates is averaged over in “Jacob’s ladder functionals.” This makes the calculations considerably more efficient. On the other hand, some of the important constraints on the form of the exchange-correlation functional become inaccessible in the one-point forms. The violation of these constraints leads to functionals plagued by systematic errors, leading to qualitatively incorrect descriptions of some chemical and physical processes.</p> <p>In this thesis the idea of a weighted density approximation (WDA) is explored. More specifically, a symmetric and normalized two-point functional is proposed for the exchange-correlation energy functional. The functional is based entirely on the hole for the uniform electron gas. By construction, these functionals fulfill two of the most important constraints: the normalization of the exchange-correlation hole and the uniform electron gas limit. The findings suggest that we should pursue a whole new generation of “new Jacob’s ladder” functionals.</p> <p>A further step was considered. Given the relevance of the long-range behavior of the exchange-correlation hole, a study of the electronic direct correlation function was performed. The idea was to build up the long-range character of the hole as convoluted pieces of the simple and short-ranged direct correlation function. This direct correlation function provides better results, at least for the correlation energy in the spin-polarized uniform electron gas.</p> <p>The advantage of one-point functionals is their computational efficiency. We therefore attempted to develop new methods that mitigate the relative computational inefficiency of two-point functionals. This led to new methods for evaluating the six-dimensional integrals that are inherent to the exchange-correlation energy.</p> / Doctor of Philosophy (PhD)

Page generated in 0.0863 seconds