• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 58
  • 12
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 99
  • 99
  • 62
  • 36
  • 29
  • 27
  • 27
  • 25
  • 24
  • 23
  • 20
  • 19
  • 18
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Clues to the nature of ultradiffuse galaxies from estimated galaxy velocity dispersions

Zaritsky, Dennis 01 January 2017 (has links)
We describe how to estimate the velocity dispersions of ultradiffuse galaxies (UDGs) using a previously defined galaxy scaling relationship. The method is accurate for the two UDGs with spectroscopically measured dispersions, as well as for ultracompact galaxies, ultrafaint galaxies, and stellar systems with little or no dark matter. This universality means that the relationship can be applied without further knowledge or prejudice regarding the structure of a galaxy. We then estimate the velocity dispersions of UDGs drawn from two published samples and examine the distribution of total masses. We find, in agreement with the previous studies of two individual UDGs, that these systems are dark matter dominated systems, and that they span a range of at least 10(10) < M-200/M-circle dot < 10(12). These galaxies are not, as an entire class, either all dwarfs or all failed L-* galaxies. Estimates of the velocity dispersions can also help identify interesting subsets of UDGs, such as those that are likely to have the largest mass-to-light ratios, for subsequent spectroscopic study.
12

Recovering the Properties of High-redshift Galaxies with Different JWST Broadband Filters

Bisigello, L., Caputi, K. I., Colina, L., Le Fèvre, O., Nørgaard-Nielsen, H. U., Pérez-González, P. G., van der Werf, P., Ilbert, O., Grogin, N., Koekemoer, A. 07 July 2017 (has links)
Imaging with the James Webb Space Telescope (JWST) will allow observations of the bulk of distant galaxies at the epoch of reionization. The recovery of their properties, such as age, color excess E(B-V), specific star formation rate (sSFR), and stellar mass, will mostly rely on spectral energy distribution fitting, based on the data provided by JWST's two imager cameras, namely the Near Infrared Camera (NIRCam) and the Mid Infrared Imager (MIRI). In this work we analyze the effect of choosing different combinations of NIRCam and MIRI broadband filters, from 0.6 to 7.7 mu m, on the recovery of these galaxy properties. We performed our tests on a sample of 1542 simulated galaxies, with known input properties, at z = 7-10. We found that, with only eight NIRCam broadbands, we can recover the galaxy age within 0.1 Gyr and the color excess within 0.06 mag for 70% of the galaxies. Additionally, the stellar masses and sSFR are recovered within 0.2 and 0.3 dex, respectively, at z = 7-9. Instead, at z = 10, no NIRCam band traces purely the lambda > 4000 angstrom regime and the percentage of outliers in stellar mass (sSFR) increases by > 20% (> 90%), in comparison to z = 9. The MIRI F560W and F770W bands are crucial to improve the stellar mass and the sSFR estimation at z = 10. When nebular emission lines are present, deriving correct galaxy properties is challenging at any redshift and with any band combination. In particular, the stellar mass is systematically overestimated in up to 0.3 dex on average with NIRCam data alone and including MIRI observations only marginally improves the estimation.
13

Modelling of eclipsing binaries

Skelton, Patricia Leigh 08 1900 (has links)
W Ursae Majoris-type (W UMa-type) variable stars are contact eclipsing binary stars whose evolution is unknown. Modelling to determine the physical parameters of as many W UMa-type variable stars as possible might provide some insight as to how these contact binaries form and evolve. The All Sky Automated Survey (ASAS) has discovered over ve thousand of these systems. Using data from the ASAS and from the Wide Angle Search for Planets (SuperWASP) project, models of selected ASAS contact binaries are being created to determine their physical parameters. Some W UMa-type variable stars are known to undergo changes in orbital period. For selected ASAS contact binaries, a period analysis has been performed using SuperWASP data to determine if the systems are undergoing changes in orbital period. Results of the modelling and period analyses of selected systems are presented. / Thesis (M. Sc. (Astronomy))
14

THE VLT LEGA-C SPECTROSCOPIC SURVEY: THE PHYSICS OF GALAXIES AT A LOOKBACK TIME OF 7 Gyr

van der Wel, A., Noeske, K., Bezanson, R., Pacifici, C., Gallazzi, A., Franx, M., Muñoz-Mateos, J. C., Bell, E. F., Brammer, G., Charlot, S., Chauké, P., Labbé, I., Maseda, M. V., Muzzin, A., Rix, H.-W., Sobral, D., Sande, J. van de, Dokkum, P. G. van, Wild, V., Wolf, C. 22 April 2016 (has links)
The Large Early Galaxy Census (LEGA-C-16) is a Public Spectroscopic Survey of similar to 3200 K-band selected galaxies at redshifts z. =. 0.6 - 1.0 with stellar masses M-* > 10(10) M-circle dot, conducted with VIMOS on ESO's Very Large Telescope. The survey is embedded in the COSMOS field (R.A. = 10h00; decl. = +2 deg). The 20 hr long integrations produce high-signal-to-noise ratio continuum spectra that reveal ages, metallicities and velocity dispersions of the stellar populations. LEGA-C's unique combination of sample size and depth will enable us for the first time to map the stellar content at large lookback time, across galaxies of different types and star formation activity. Observations started in 2014 December and are planned to be completed by mid 2018, with early data releases of the spectra and value-added products. In this paper we present the science case, the observing strategy, an overview of the data reduction process and data products, and a first look at the relationship between galaxy structure and spectral properties, as it existed 7 Gyr ago.
15

The Ages of A-Stars

Jones, Jeremy W 12 August 2016 (has links)
Stars with spectral type `A' (also called A-type stars or just A-stars) are bright intermediate mass stars (∼1.5-2.5 M⊙) that make up ∼1% of stars within 25 parsecs, and ∼20% of the brightest stars in the night sky (V < 3 mag). Most A-stars rotate rapidly with rotational velocities that range from ∼100 to ∼200 km/s in most cases, but can exceed 300 km/s. Such rapid rotation not only causes a star's observed properties (flux, temperature, and radius) to be inclination dependent, but also changes how the star evolves both chemically and structurally. Herein we conduct an interferometric survey of nearby A-stars using the CHARA Array. The long baselines of this optical/infrared interferometer enable us to measure the angular sizes of stars as small as ∼0.2 mas, and directly map the oblate shapes of rotationally distorted stars. This in turn allows us to more accurately determine their photospheric properties and estimate their ages and masses by comparing to evolution models that account for rotation. To facilitate this survey, we construct a census of all 232 A-stars within 50 parsecs (the 50PASS) and from that construct a sample of A-stars (the OSESNA) that lend themselves to interferometric observations with the CHARA Array (i.e., are in the northern hemisphere and have no known, bright, and nearby companions - 108 stars in total). The observations are interpreted by constructing a physical model of a rapidly rotating star from which we generate both photometric and interferometric model observations for comparison with actual observations. The stellar properties of the best fitting model are then compared to the MESA evolution models to estimate an age and a mass. To validate this physical model and the adopted MESA code, we first determine the ages of seven members of the Ursa Major moving group, which are expected to be coeval. With the exception of one star with questionable membership, these stars show a 1-σ spread in age of 56 Myr. This agreement validates our technique and provides a new estimate of the age for the group of 414 ± 23 Myr. We apply this validated technique to the directly-imaged `planet' host star κ Andromedae and determine its age to be 47+27-40 Myr. This implies the companion has a mass of 22+8-9 MJup and is thus more likely a brown dwarf than a giant planet. In total, we present new age and mass estimates for 55 nearby A-stars including six members of the Hyades open cluster, five stars with the λ Boötis chemical peculiarity, nine stars which have an infrared excess, possibly from a debris disk, and nine pulsating stars.
16

Stellar and Planetary Parameters for K2's Late-type Dwarf Systems from C1 to C5

Martinez, Arturo O., Crossfield, Ian J. M., Schlieder, Joshua E., Dressing, Courtney D., Obermeier, Christian, Livingston, John, Ciceri, Simona, Peacock, Sarah, Beichman, Charles A., Lépine, Sébastien, Aller, Kimberly M., Chance, Quadry A., Petigura, Erik A., Howard, Andrew W., Werner, Michael W. 03 March 2017 (has links)
The NASA K2 mission uses photometry to find planets transiting stars of various types. M dwarfs are of high interest since they host more short-period planets than any other type of main-sequence star and transiting planets around M dwarfs have deeper transits compared to other main-sequence stars. In this paper, we present stellar parameters from K and M dwarfs hosting transiting planet candidates discovered by our team. Using the SOFI spectrograph on the European Southern Observatory's New Technology Telescope, we obtained R approximate to 1000 J-, H-, and K-band (0.95-2.52 mu m) spectra of 34 late-type K2 planet and candidate planet host systems and 12 bright K4-M5 dwarfs with interferometrically measured radii and effective temperatures. Out of our 34 late-type K2 targets, we identify 27 of these stars as M dwarfs. We measure equivalent widths of spectral features, derive calibration relations using stars with interferometric measurements, and estimate stellar radii, effective temperatures, masses, and luminosities for the K2 planet hosts. Our calibrations provide radii and temperatures with median uncertainties of 0.059 R-circle dot (16.09%) and 160 K (4.33%), respectively. We then reassess the radii and equilibrium temperatures of known and candidate planets based on our spectroscopically derived stellar parameters. Since a planet's radius and equilibrium temperature depend on the parameters of its host star, our study provides more precise planetary parameters for planets and candidates orbiting late-type stars observed with K2. We find a median planet radius and an equilibrium temperature of approximately 3 R-circle plus and 500 K, respectively, with several systems (K2-18b and K2-72e) receiving near-Earth-like levels of incident irradiation.
17

DISCOVERY AND VALIDATION OF A HIGH-DENSITY SUB-NEPTUNE FROM THE K2 MISSION

Espinoza, Nestor, Brahm, Rafael, Jordan, Andres, Jenkins, James S., Rojas, Felipe, Jofre, Paula, Madler, Thomas, Rabus, Markus, Chaname, Julio, Pantoja, Blake, Soto, Maritza G., Morzinski, Katie M., Males, Jared R., Ward-Duong, Kimberly, Close, Laird M. 10 October 2016 (has links)
We report the discovery of K2-56b, a high-density sub-Neptune exoplanet, made using photometry from Campaign 4 of the two-wheeled Kepler (K2) mission, ground-based radial velocity (RV) follow-up from HARPS and high-resolution lucky and adaptive optics imaging obtained using AstraLux and MagAO, respectively. The host star is a bright (V - 11.04, K-s - 9.37), slightly metal-poor ([Fe/H] - -0.15 +/- 0.05 dex) solar analogue located at 152.1(-7.4)(+9.7) pc from Earth, for which we find a radius of R-* = 0.928(-04040)(+0.055) and a mass of M-* = 0.961(-0.029)(+0.032) M-circle dot. A joint analysis of the K2 photometry and HARPS RVs reveal that the planet is in a approximate to 42 day orbit around its host star, has a radius of 2.23(011)(+0.14)R(circle plus), and a mass of 16.3(6.1)(+6.0) M-circle plus. Although the data at hand put the planet in the region of the massradius diagram where we could expect planets with a pure rock (i.e., magnesium silicate) composition using two-layer models (i.e., between rock/iron and rock/ice compositions), we discuss more realistic three-layer composition models which can explain the high density of the discovered exoplanet. The fact that the planet lies in the boundary between "possibly rocky" and "non-rocky" exoplanets makes it an interesting planet for future RV follow-up.
18

197 CANDIDATES AND 104 VALIDATED PLANETS IN K2's FIRST FIVE FIELDS

Crossfield, Ian J. M., Ciardi, David R., Petigura, Erik A., Sinukoff, Evan, Schlieder, Joshua E., Howard, Andrew W., Beichman, Charles A., Isaacson, Howard, Dressing, Courtney D., Christiansen, Jessie L., Fulton, Benjamin J., Lepine, Sebastien, Weiss, Lauren, Hirsch, Lea, Livingston, John, Baranec, Christoph, Law, Nicholas M., Riddle, Reed, Ziegler, Carl, Howell, Steve B., Horch, Elliott, Everett, Mark, Teske, Johanna, Martinez, Arturo O., Obermeier, Christian, Benneke, Bjorn, Scott, Nic, Deacon, Niall, Aller, Kimberly M., Hansen, Brad M. S., Mancini, Luigi, Ciceri, Simona, Brahm, Rafael, Jordan, Andres, Knutson, Heather A., Henning, Thomas, Bonnefoy, Michael, Liu, Michael C., Crepp, Justin R., Lothringer, Joshua, Hinz, Phil, Bailey, Vanessa, Skemer, Andrew, Defrere, Denis 02 September 2016 (has links)
We present 197 planet candidates discovered using data from the first year of the NASA K2 mission (Campaigns 0-4), along with the results of an intensive program of photometric analyses, stellar spectroscopy, high-resolution imaging, and statistical validation. We distill these candidates into sets of 104 validated planets (57 in multi-planet systems), 30 false positives, and 63 remaining candidates. Our validated systems span a range of properties, with median values of R-P = 2.3 R-circle plus, P = 8.6 days, T-eff = 5300 K, and Kp = 12.7 mag. Stellar spectroscopy provides precise stellar and planetary parameters for most of these systems. We show that K2 has increased by 30% the number of small planets known to orbit moderately bright stars (1-4 R-circle plus, Kp = 9-13. mag). Of particular interest are 76 planets smaller than 2 R-circle plus, 15 orbiting stars brighter than Kp = 11.5. mag, 5 receiving Earth-like irradiation levels, and several multi-planet systems-including 4 planets orbiting the M dwarf K2-72 near mean-motion resonances. By quantifying the likelihood that each candidate is a planet we demonstrate that our candidate sample has an overall false positive rate of 15%-30%, with rates substantially lower for small candidates (<2 R-circle plus) and larger for candidates with radii >8 R-circle plus and/or with P < 3 days. Extrapolation of the current planetary yield suggests that K2 will discover between 500 and 1000 planets in its planned four-year mission, assuming sufficient follow-up resources are available. Efficient observing and analysis, together with an organized and coherent follow-up strategy, are essential for maximizing the efficacy of planet-validation efforts for K2, TESS, and future large-scale surveys.
19

The Sirius System and Its Astrophysical Puzzles: Hubble Space Telescope and Ground-based Astrometry

Bond, Howard E., Schaefer, Gail H., Gilliland, Ronald L., Holberg, Jay B., Mason, Brian D., Lindenblad, Irving W., Seitz-McLeese, Miranda, Arnett, W. David, Demarque, Pierre, Spada, Federico, Young, Patrick A., Barstow, Martin A., Burleigh, Matthew R., Gudehus, Donald 08 May 2017 (has links)
Sirius, the seventh-nearest stellar system, is a visual binary containing the metallic-line A1. V star Sirius. A, the brightest star in the sky, orbited in a 50.13. year period by Sirius B, the brightest and nearest white dwarf (WD). Using images obtained over nearly two decades with the Hubble Space Telescope (HST), along with photographic observations covering almost 20 years and nearly 2300 historical measurements dating back to the 19th century, we determine precise orbital elements for the visual binary. Combined with the parallax and the motion of the A component, these elements yield dynamical masses of 2.063 +/- 0.023 M circle dot and 1.018 +/- 0.011 M circle dot for Sirius. A and B, respectively. Our precise HST astrometry rules out third bodies orbiting either star in the system, down to masses of similar to 15-25 M-Jup. The location of Sirius. B in the Hertzsprung-Russell diagram is in excellent agreement with theoretical cooling tracks for WDs of its dynamical mass, and implies a cooling age of similar to 126 Myr. The position of Sirius. B on the mass-radius plane is also consistent with WD theory, assuming a carbon-oxygen core. Including the pre-WD evolutionary timescale of the assumed progenitor, the total age of Sirius B is about 228 +/- 10 Myr. We calculated evolutionary tracks for stars with the dynamical mass of Sirius A, using two independent codes. We find it necessary to assume a slightly subsolar metallicity, of about 0.85 Z circle dot, to fit its location on the luminosity-radius plane. The age of Sirius. A based on these models is about 237-247. Myr, with uncertainties of +/- 15 Myr, consistent with that of the WD companion. We discuss astrophysical puzzles presented by the Sirius system, including the probability that the two stars must have interacted in the past, even though there is no direct evidence for this and the orbital eccentricity remains high.
20

TIDAL RESPONSE OF PRELIMINARY JUPITER MODEL

Wahl, Sean M., Hubbard, William B., Militzer, Burkhard 21 October 2016 (has links)
In anticipation of improved observational data for Jupiter's gravitational field, from the Juno spacecraft, we predict the static tidal response for a variety of Jupiter interior models based on ab initio computer simulations of hydrogen-helium mixtures. We calculate hydrostatic-equilibrium gravity terms, using the non-perturbative concentric Maclaurin Spheroid method that eliminates lengthy expansions used in the theory of figures. Our method captures terms arising from the coupled tidal and rotational perturbations, which we find to be important for a rapidly rotating planet like Jupiter. Our predicted static tidal Love number, k(2) = 0.5900, is similar to 10% larger than previous estimates. The value is, as expected, highly correlated with the zonal harmonic coefficient J(2), and is thus nearly constant when plausible changes are made to the interior structure while holding J(2) fixed at the observed value. We note that the predicted static k(2) might change, due to Jupiter's dynamical response to the Galilean moons, and find reasons to argue that the change may be detectable-although we do not present here a theory of dynamical tides for highly oblate Jovian planets. An accurate model of Jupiter's tidal response will be essential for interpreting Juno observations and identifying tidal signals from effects of other interior dynamics of Jupiter's gravitational field.

Page generated in 0.0912 seconds