Spelling suggestions: "subject:"fungal remediation:action long"" "subject:"fungal remediation:action hong""
1 |
Remediation of abandoned shipyard soil by organic amendment using compost of fungus Pleurotus pulmonarius.January 2005 (has links)
by Chan Sze Sze. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 193-218). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstracts --- p.ii / 摘要 --- p.v / Contents --- p.viii / List of figures --- p.xv / List of tables --- p.xix / Abbreviations --- p.xxii / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- The North Tsing Yi Abandoned Shipyard area --- p.1 / Chapter 1.2 --- Polycyclic aromatic hydrocarbons (PAHs) in the site --- p.3 / Chapter 1.2.1 --- Characteristics of PAHs --- p.3 / Chapter 1.2.2 --- Sources of PAHs --- p.8 / Chapter 1.2.3 --- Environmental fates of PAHs --- p.9 / Chapter 1.2.4 --- Biodegradation of PAHs --- p.10 / Chapter 1.2.5 --- Toxicity of PAHs --- p.13 / Chapter 1.2.6 --- PAHs contamination in Hong Kong --- p.14 / Chapter 1.2.7 --- Soil decontamination assessment in Hong Kong --- p.16 / Chapter 1.2.8 --- Environmental standards of PAHs --- p.18 / Chapter 1.2.9 --- Remediation technology of PAHs --- p.21 / Chapter 1.2.9.1 --- Bioremediation --- p.22 / Chapter 1.3 --- Heavy metals in the site --- p.28 / Chapter 1.3.1 --- "Characteristics of copper, lead and zinc" --- p.29 / Chapter 1.3.2 --- "Sources of copper, lead and zinc" --- p.32 / Chapter 1.3.3 --- "Environmental fates of copper, lead and zinc" --- p.34 / Chapter 1.3.4 --- "Toxicities of copper, lead and zinc" --- p.36 / Chapter 1.3.5 --- "Copper, lead and zinc contamination in Hong Kong" --- p.39 / Chapter 1.3.6 --- "Environmental standards of copper, lead and zinc" --- p.40 / Chapter 1.3.7 --- Remediation technology of heavy metal --- p.42 / Chapter 1.3.7.1 --- Chemical method --- p.42 / Chapter 1.3.7.2 --- Biological method --- p.43 / Chapter 1.3.7.3 --- Stabilization and Solidification --- p.45 / Chapter 1.4 --- Aim of study --- p.47 / Chapter 1.5 --- Objectives --- p.47 / Chapter 1.6 --- Research Strategy --- p.47 / Chapter 1.7 --- Significance of study --- p.48 / Chapter 2 --- Materials and Methods --- p.49 / Chapter 2.1 --- Soil Collection --- p.49 / Chapter 2.2 --- Characterization of soil --- p.49 / Chapter 2.2.1 --- Sample preparation --- p.49 / Chapter 2.2.2 --- "Soil pH, electrical conductivity & salinity" --- p.50 / Chapter 2.2.3 --- Total organic carbon contents --- p.51 / Chapter 2.2.4 --- Soil texture --- p.51 / Chapter 2.2.5 --- Moisture --- p.53 / Chapter 2.2.6 --- Total nitrogen and total phosphorus --- p.53 / Chapter 2.2.7 --- Available nitrogen --- p.53 / Chapter 2.2.8 --- Available phosphorus --- p.54 / Chapter 2.2.9 --- Soil bacterial and fungal population --- p.54 / Chapter 2.2.10 --- Extraction of PAHs and organic pollutants --- p.55 / Chapter 2.2.10.1 --- Extraction procedure --- p.55 / Chapter 2.2.10.2 --- GC-MS condition --- p.56 / Chapter 2.2.10.3 --- Preparation of mixed PAHs stock solution --- p.56 / Chapter 2.2.11 --- Oil and grease content --- p.57 / Chapter 2.2.12 --- Total Petroleum Hydrocarbons (TPH) --- p.57 / Chapter 2.2.13 --- Total heavy metal analysis --- p.58 / Chapter 2.2.14 --- Toxicity characteristic leaching procedure (TCLP) --- p.59 / Chapter 2.2.15 --- Extraction efficiency --- p.59 / Chapter 2.3 --- Production of mushroom compost --- p.60 / Chapter 2.4 --- Characterization of mushroom compost --- p.62 / Chapter 2.4.1 --- Enzyme assay --- p.62 / Chapter 2.4.1.1 --- Laccase assay --- p.62 / Chapter 2.4.1.2 --- Manganese peroxidase assay --- p.62 / Chapter 2.5 --- Addition of mushroom to soil on site --- p.63 / Chapter 2.5.1 --- Transportation of mushroom compost to Tsing Yi --- p.63 / Chapter 2.5.2 --- Mixing of mushroom compost and soil --- p.64 / Chapter 2.6 --- Soil Monitoring --- p.64 / Chapter 2.6.1 --- On site air and soil measurements --- p.64 / Chapter 2.6.1.1 --- Air temperature and moisture --- p.64 / Chapter 2.6.1.2 --- Light intensity --- p.64 / Chapter 2.6.1.3 --- UV intensity --- p.65 / Chapter 2.6.1.4 --- Rainfall --- p.65 / Chapter 2.6.1.5 --- Soil temperature --- p.65 / Chapter 2.6.2 --- Soil chemical characteristic --- p.65 / Chapter 2.6.3 --- Relative residue pollutant (%) --- p.65 / Chapter 2.7 --- Toxicity of treated soil --- p.66 / Chapter 2.7.1 --- Seed germination test --- p.66 / Chapter 2.7.2 --- Indigenous bacterial toxicity test --- p.67 / Chapter 2.7.3 --- Fungal toxicity test --- p.68 / Chapter 2.7.3.1 --- Preparation of ergosterol standard solution --- p.70 / Chapter 2.8 --- Soil Washing --- p.70 / Chapter 2.8.1 --- Optimization of soil washing --- p.70 / Chapter 2.8.1.1 --- Effect of hydrochloric acid concentration --- p.70 / Chapter 2.8.1.2 --- Effect of incubation time --- p.71 / Chapter 2.9 --- Phytoremediation --- p.71 / Chapter 2.10 --- Mycoextraction --- p.72 / Chapter 2.11 --- Integrated bioextraction --- p.72 / Chapter 2.12 --- Cementation --- p.73 / Chapter 2.13 --- Glass encapsulation --- p.73 / Chapter 2.14 --- Statistical analysis --- p.74 / Chapter 3 --- Results --- p.75 / Chapter 3.1 --- Characterization of soil --- p.75 / Chapter 3.2 --- Characterization of mushroom compost --- p.78 / Chapter 3.2.1 --- Enzyme activity --- p.78 / Chapter 3.2.2 --- Total nitrogen and total phosphorus contents --- p.78 / Chapter 3.3 --- Soil monitoring --- p.79 / Chapter 3.3.1 --- Initial pollutant content in biopile and fungal treatment soils --- p.79 / Chapter 3.3.2 --- On site air and soil physical characteristics --- p.81 / Chapter 3.3.2.1 --- Soil temperature and air temperature --- p.81 / Chapter 3.3.3 --- Soil chemical characteristic --- p.84 / Chapter 3.3.3.1 --- Effect of type of treatment on total petroleum hydrocarbon content --- p.85 / Chapter 3.3.3.2 --- Effect of type of treatment on oil and grease content --- p.87 / Chapter 3.3.3.3 --- Soil pH --- p.89 / Chapter 3.3.3.4 --- Moisture --- p.91 / Chapter 3.3.3.5 --- Electrical conductivity --- p.92 / Chapter 3.3.3.6 --- Salinity --- p.93 / Chapter 3.3.3.7 --- Microbial population --- p.95 / Chapter 3.3.3.8 --- Removal of organopollutant PAHs in biopile and fungal treatment --- p.98 / Chapter 3.3.3.9 --- Effect of type of treatment on residual PAHs at Day 4 --- p.104 / Chapter 3.3.3.10 --- Effect of type of treatment on residual PAHs at peak levels --- p.107 / Chapter 3.3.3.11 --- Effect of type of treatment on residual organopollutants at the end of treatments --- p.109 / Chapter 3.3.3.12 --- Effect of type of treatment on total nitrogen and phosphorus contents --- p.111 / Chapter 3.3.3.13 --- Effect of type of treatment on physical and chemical properties of soil --- p.113 / Chapter 3.4 --- Toxicity of treated soil --- p.116 / Chapter 3.4.1 --- Seed germination test --- p.116 / Chapter 3.4.2 --- Indigenous bacterial toxicity test --- p.120 / Chapter 3.4.3 --- Fungal toxicity test --- p.125 / Chapter 3.5 --- Soil washing --- p.129 / Chapter 3.5.1 --- Optimisation of soil washing --- p.129 / Chapter 3.5.1.1 --- The effect of hydrochloric acid concentration --- p.129 / Chapter 3.5.1.2 --- The effect of incubation time --- p.134 / Chapter 3.6 --- Mycoextraction --- p.139 / Chapter 3.7 --- Phytoextraction and integrated bioextraction --- p.146 / Chapter 3.8 --- Cementation --- p.153 / Chapter 3.9 --- Glass encapsulation --- p.158 / Chapter 4 --- Discussion --- p.160 / Chapter 4.1 --- Characterization of soil --- p.160 / Chapter 4.2 --- Characterization of mushroom compost --- p.162 / Chapter 4.2.1 --- Enzyme activity --- p.162 / Chapter 4.2.2 --- Total nitrogen and total phosphorus contents --- p.163 / Chapter 4.3 --- Soil monitoring --- p.163 / Chapter 4.3.1 --- Initial pollutant content in biopile and fungal treatment soil --- p.163 / Chapter 4.3.2 --- On site air and soil physical characteristics --- p.164 / Chapter 4.3.3 --- Soil chemical characteristic --- p.164 / Chapter 4.3.3.1 --- Soil pH --- p.164 / Chapter 4.3.3.2 --- Moisture --- p.165 / Chapter 4.3.3.3 --- Electrical conductivity --- p.165 / Chapter 4.3.3.4 --- Salinity --- p.166 / Chapter 4.3.3.5 --- Microbial population in biopile and fungal treatments --- p.166 / Chapter 4.3.3.6 --- Removal of organopollutant PAHs in biopile and fungal treatments --- p.168 / Chapter 4.3.3.7 --- Effect of type of treatment on residual PAHs at peak levels --- p.170 / Chapter 4.3.3.8 --- Effect of type of treatment on residual oil and grease and TPH contents --- p.171 / Chapter 4.3.3.9 --- Effect of type of treatment on total nitrogen and phosphorus contents --- p.172 / Chapter 4.3.3.10 --- Effect of type of treatment on physical and chemical properties of the soil --- p.173 / Chapter 4.4 --- Toxicity of treated soil --- p.174 / Chapter 4.5 --- Summary of Pleurotus pulmonarius mushroom compost on organopollutant remediation --- p.177 / Chapter 4.6 --- Soil washing --- p.178 / Chapter 4.7 --- Mycoextraction --- p.180 / Chapter 4.8 --- Phytoextraction and integrated bioextraction --- p.182 / Chapter 4.9 --- Cementation --- p.184 / Chapter 4.10 --- Glass encapsulation --- p.185 / Chapter 4.11 --- "Summary of physical, chemical and biological heavy metal removal treatments" --- p.186 / Chapter 4.12 --- Future studies --- p.187 / Chapter 5 --- Conclusion --- p.190 / Chapter 6 --- References --- p.193
|
Page generated in 0.3605 seconds