• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies of the impact of mycoflora associated with oryza sativa (rice) in South Africa

Hossain, Mohammed Tufazzal 17 March 2014 (has links)
The objective of this research was to investigate the occurrence of mycoflora in rice plants and rice seeds in South Africa and their negative impact. A total of six species of Fusarium were isolated from diseased rice plants and rice seeds and identified as F. anthophilum, F. chlamydosporum, F. compactum, F. equiseti, F. fujikuroi and F. semitectum. In the translation elongation factor data set, Fusarium equiseti isolates grouped together within the F. incarnatum - equiseti Species Complex (FIESC). The isolates from rice clustered together in a single clade with the F. equiseti and F. incarnatum isolates forming two separate sub-clades.The isolates of F. equiseti present a new phylogenetically distinct species in FIESC. In the pathogenicity tests, isolates of both F. anthophilum and F. fujikuroi caused bakanae disease to rice plants. Fifty four rice cultivars and lines were tested by the standardized test tube inoculation method for resistance and susceptibility against bakanae isolate of F. anthophilum and the bakanae isolate of F. fujikuroi. None of the rice cultivars and lines was found to be resistant to bakanae isolates of Fusarium spp. The fungicide, benomyl was found to be most effective as a seed treatment for controlling bakanae disease of rice due to isolates of both F. anthophilum and F. fujikuroi. Thiram was found to be the least effective fungicide for controlling bakanae disease of rice caused by isolates of both the Fusarium spp. Apart from Fusarium species, other fungi that were also isolated from diseased rice plants and rice seeds were identified as Alternaria alternata, Alternaria longipes, Cochliobolus miyabeanus, Nigrospora sphaerica, Phoma eupyrena, Phoma jolyana, Phoma sorghina and Pithomyces sp. In mycotoxin tests, the isolates of both F. anthophilum and F. fujikuroi produced moniliformin. None of the isolates of F. anthophilum and F. fujikuroi produced fumonisins. This research is important as it identifies many fungal species in rice plants and seeds in South Africa for the first time. Currently, there is very little literature that makes reference to such findings under South African conditions. In addition, this investigation unravels previously unknown information on the resistance of rice to bakanese disease. Finally, information is provided on the effectiveness of commonly used fungicides (benomyl and thiram) to control rice diseases. This knowledge is crucial information that is useful to plant pathologists, the farming community and the scientists that are involved in strategies of fighting or reducing rice diseases so as to help contribute to food security. / Environmental Sciences / D. Phil. (Environmental Science)
2

Studies of the impact of mycoflora associated with oryza sativa (rice) in South Africa

Hossain, Mohammed Tufazzal 17 March 2014 (has links)
The objective of this research was to investigate the occurrence of mycoflora in rice plants and rice seeds in South Africa and their negative impact. A total of six species of Fusarium were isolated from diseased rice plants and rice seeds and identified as F. anthophilum, F. chlamydosporum, F. compactum, F. equiseti, F. fujikuroi and F. semitectum. In the translation elongation factor data set, Fusarium equiseti isolates grouped together within the F. incarnatum - equiseti Species Complex (FIESC). The isolates from rice clustered together in a single clade with the F. equiseti and F. incarnatum isolates forming two separate sub-clades.The isolates of F. equiseti present a new phylogenetically distinct species in FIESC. In the pathogenicity tests, isolates of both F. anthophilum and F. fujikuroi caused bakanae disease to rice plants. Fifty four rice cultivars and lines were tested by the standardized test tube inoculation method for resistance and susceptibility against bakanae isolate of F. anthophilum and the bakanae isolate of F. fujikuroi. None of the rice cultivars and lines was found to be resistant to bakanae isolates of Fusarium spp. The fungicide, benomyl was found to be most effective as a seed treatment for controlling bakanae disease of rice due to isolates of both F. anthophilum and F. fujikuroi. Thiram was found to be the least effective fungicide for controlling bakanae disease of rice caused by isolates of both the Fusarium spp. Apart from Fusarium species, other fungi that were also isolated from diseased rice plants and rice seeds were identified as Alternaria alternata, Alternaria longipes, Cochliobolus miyabeanus, Nigrospora sphaerica, Phoma eupyrena, Phoma jolyana, Phoma sorghina and Pithomyces sp. In mycotoxin tests, the isolates of both F. anthophilum and F. fujikuroi produced moniliformin. None of the isolates of F. anthophilum and F. fujikuroi produced fumonisins. This research is important as it identifies many fungal species in rice plants and seeds in South Africa for the first time. Currently, there is very little literature that makes reference to such findings under South African conditions. In addition, this investigation unravels previously unknown information on the resistance of rice to bakanese disease. Finally, information is provided on the effectiveness of commonly used fungicides (benomyl and thiram) to control rice diseases. This knowledge is crucial information that is useful to plant pathologists, the farming community and the scientists that are involved in strategies of fighting or reducing rice diseases so as to help contribute to food security. / Environmental Sciences / D. Phil. (Environmental Science)

Page generated in 0.0483 seconds