• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental and numerical investigation of the thermal performance of the gas-cooled divertor plate concept

Gayton, Elisabeth Faye. January 2008 (has links)
Thesis (M. S.)--Nuclear Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Abdel-Khalik, Said; Committee Co-Chair: Yoda, Minami; Committee Member: Ghiaasiaan, S. Mostafa. Part of the SMARTech Electronic Thesis and Dissertation Collection.
2

Experimental and numerical investigation of the thermal performance of the gas-cooled divertor plate concept

Gayton, Elisabeth Faye 19 November 2008 (has links)
Experimental and numerical studies simulating the gas-cooled divertor plate design concept have been carried out. While thermo-fluid and thermo-mechanical analyses have been previously performed to show the feasibility of the divertor plate design and its ability to accommodate a maximum heat flux of up to 10 MW/m2, no experimental data have heretofore been published to support or validate such analyses. To that end, this investigation has been undertaken. A test module with prototypical cross-sectional geometry has been designed, constructed, and instrumented. Experiments spanning the prototypical Reynolds numbers of the helium-cooled divertor have been conducted using pressurized air as the coolant. A second test module where the planar jet exiting the inlet manifold is replaced by a two-dimensional hexagonal array of circular jets over the entire top surface of the inlet manifold has also been tested. The thermal performance of both test modules with and without a porous metallic foam layer in the gap between the outer surface of the inlet manifold and the cooled surfaces of the pressure boundary were directly compared. For a given mass flow rate, the slot design with the metallic foam insert showed the highest heat transfer coefficient, with a pressure drop lower than that of the array of circular jets without foam. Additionally, numerical simulations matching the experimental operating conditions for the two cases without foam were performed using the computational fluid dynamics software package, FLUENT® v6.2. Comparisons of the experimental and numerical pressure drop, temperature, and heat transfer coefficient were made.
3

Experimental and Numerical Studies of Mist Cooling with Thin Evaporating Subcooled Liquid Films

Novak, Vladimir 11 April 2006 (has links)
An experimental and numerical investigation has been conducted to examine steady, internal, nozzle-generated, gas/liquid mist cooling in vertical channels with ultra-thin, evaporating subcooled liquid films. Interest in this research has been motivated by the need for a highly efficient cooling mechanism in high-power lasers for inertial fusion reactor applications. The aim is to quantify the effects of various operating and design parameters, viz. liquid atomization nozzle design (i.e. spray geometry, droplet size distribution, etc.), heat flux, liquid mass fraction, film thickness, carrier gas velocity, temperature, and humidity, injected liquid temperature, gas/liquid combinations, channel geometry, length, and wettability, and flow direction, on mist cooling effectiveness. A fully-instrumented experimental test facility has been designed and constructed. The facility includes three cylindrical and two rectangular electrically-heated test sections with different unheated entry lengths. Water is used as the mist liquid with air, or helium, as the carrier gas. Three types of mist generating nozzles with significantly different spray characteristics are used. Numerous experiments have been conducted; local heat transfer coefficients along the channels are obtained for a wide range of operating conditions. The data indicate that mist cooling can increase the heat transfer coefficient by more than an order of magnitude compared to forced convection using only the carrier gas. The data obtained in this investigation will allow designers of mist-cooled high heat flux engineering systems to predict their performance over a wide range of design and operating parameters. Comparison has been made between the data and predictions of a modified version of the KIVA-3V code, a mechanistic, three-dimensional computer program for internal, transient, dispersed two-phase flow applications. Good agreement has been obtained for downward mist flow at moderate heat fluxes; at high heat fluxes, the code underpredicts the local heat transfer coefficients and does not predict the onset of film rupture. For upward mist flow, the code underpredicts the local heat transfer coefficients and, contrary to experimental observations, predicts early dryout at the test section exit.

Page generated in 0.0859 seconds