Spelling suggestions: "subject:"high average power lasers"" "subject:"igh average power lasers""
1 |
Colloidal nanoparticles : a new class of laser gain mediaMorgan, Robert Douglas 20 August 2010 (has links)
Development of high average power lasers has historically been limited by the properties of available gain media. As a result it is either too costly or impractical to employ lasers in many applications for which they would otherwise be well suited. We have synthesized a new type of colloidal laser gain material that should possess many of the advantages of solid state media without their primary disadvantage: poor thermal performance. The colloid consisted of an emulsion of 20% Nd+3 doped phosphate glass nanoparticles suspended in nonanoic acid. The spectroscopic properties of the material were found to be consistent with those of bulk Nd+3 doped materials and suitable for laser development. / text
|
2 |
Experimental and Numerical Studies of Mist Cooling with Thin Evaporating Subcooled Liquid FilmsNovak, Vladimir 11 April 2006 (has links)
An experimental and numerical investigation has been conducted to examine steady, internal, nozzle-generated, gas/liquid mist cooling in vertical channels with ultra-thin, evaporating subcooled liquid films. Interest in this research has been motivated by the need for a highly efficient cooling mechanism in high-power lasers for inertial fusion reactor applications. The aim is to quantify the effects of various operating and design parameters, viz. liquid atomization nozzle design (i.e. spray geometry, droplet size distribution, etc.), heat flux, liquid mass fraction, film thickness, carrier gas velocity, temperature, and humidity, injected liquid temperature, gas/liquid combinations, channel geometry, length, and wettability, and flow direction, on mist cooling effectiveness.
A fully-instrumented experimental test facility has been designed and constructed. The facility includes three cylindrical and two rectangular electrically-heated test sections with different unheated entry lengths. Water is used as the mist liquid with air, or helium, as the carrier gas. Three types of mist generating nozzles with significantly different spray characteristics are used. Numerous experiments have been conducted; local heat transfer coefficients along the channels are obtained for a wide range of operating conditions. The data indicate that mist cooling can increase the heat transfer coefficient by more than an order of magnitude compared to forced convection using only the carrier gas. The data obtained in this investigation will allow designers of mist-cooled high heat flux engineering systems to predict their performance over a wide range of design and operating parameters.
Comparison has been made between the data and predictions of a modified version of the KIVA-3V code, a mechanistic, three-dimensional computer program for internal, transient, dispersed two-phase flow applications. Good agreement has been obtained for downward mist flow at moderate heat fluxes; at high heat fluxes, the code underpredicts the local heat transfer coefficients and does not predict the onset of film rupture. For upward mist flow, the code underpredicts the local heat transfer coefficients and, contrary to experimental observations, predicts early dryout at the test section exit.
|
Page generated in 0.101 seconds