• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 122
  • 97
  • 9
  • 7
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 278
  • 278
  • 100
  • 84
  • 61
  • 58
  • 55
  • 48
  • 37
  • 31
  • 31
  • 28
  • 28
  • 27
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Fuzzy logic system for intermixed biogas and photovoltaics measurement and control

Matindife, Liston 12 1900 (has links)
The major contribution of this dissertation is the development of a new integrated measurement and control system for intermixed biogas and photovoltaic systems to achieve safe and optimal energy usage. Literature and field studies show that existing control methods fall short of comprehensive system optimization and fault diagnosis, hence the need to re-look these control methods. The control strategy developed in this dissertation is a considerable enhancement on existing strategies as it incorporates intelligent fuzzy logic algorithms based on C source codes developed on the MPLABX programming environment. Measurements centered on the PIC18F4550 microcontroller were carried out on existing biogas and photovoltaic installations. The designed system was able to accurately predict digester stability, quantify biogas output and carry out biogas fault detection and control. Optimized battery charging and photovoltaic fault detection and control was also successfully implemented. The system optimizes the operation and performance of biogas and photovoltaic energy generation. / Electrical Engineering / M. Tech. (Electrical Engineering)
272

Geração genética de classificador fuzzy intervalar do tipo-2

Pimenta, Adinovam Henriques de Macedo 30 October 2009 (has links)
Made available in DSpace on 2016-06-02T19:05:45Z (GMT). No. of bitstreams: 1 3199.pdf: 1902769 bytes, checksum: 95b9e8c5042bd6117bd75983a58966f6 (MD5) Previous issue date: 2009-10-30 / Universidade Federal de Sao Carlos / The objective of this work is to study, expand and evaluate the use of interval type-2 fuzzy sets in the knowledge representation for fuzzy inference systems, specifically for fuzzy classifiers, as well as its automatic generation form data sets, by means of genetic algorithms. This work investigates the use of such sets focussing the issue of balance between the cost addition in representation and the gains in interpretability and accuracy, both deriving from the representation and processing complexity of interval type-2 fuzzy sets. With this intent, an evolutionary model composed of three stages was proposed and implemented. In the first stage the rule base is generated, in the second stage the data base is optimized and finally, the number of rules of the rule base obtained is optimized in the third stage. The model developed was evaluated using several benchmark data sets and the results obtained were compared with two other fuzzy classifiers, being one of them generated by the same model using type-1 fuzzy sets and the other one generated by the Wang&Mendel method. Statistical methods usually applied for comparisons in similar contexts demonstrated a significant improvement in the classification rates of the intervalar type-2 fuzzy set classifier generated by the proposed model, with relation to the other methods. / O objetivo deste trabalho é estudar, expandir e avaliar o uso de conjuntos fuzzy intervalares tipo-2 na representação do conhecimento em sistemas de inferência fuzzy, mais especificamente para os classificadores fuzzy, bem como sua geração automática a partir de conjuntos de dados, por meio de algoritmos genéticos. Esse trabalho investiga o uso de tais conjuntos com enfoque na questão de balanceamento entre o acréscimo de custo da representação e os ganhos em interpretabilidade e precisão, ambos decorrentes da complexidade de representação e processamento dos conjuntos fuzzy intervalares do tipo-2. Com este intuito, foi proposto e implementado um modelo evolutivo composto por três etapas. Na primeira etapa á gerada a base de regras, na segunda é otimizada a base de dados e, por fim, na terceira etapa o número de regras da base gerada é otimizado. O modelo desenvolvido foi avaliado em diversos conjuntos de dados benchmark e os resultados obtidos foram comparados com outros dois classificadores fuzzy, sendo um deles gerados pelo mesmo modelo, porém, utilizando conjuntos fuzzy do tipo-1 e, o outro, gerado pelo método de Wang&Mendel. Métodos estatísticos de comparação usualmente aplicados em contextos semelhantes mostraram aumento significativo na taxa de classificação do classificador fuzzy intervalar do tipo-2 gerado pelo modelo em relação aos outros dois classificadores utilizados para comparação.
273

Processamento Inteligente de Sinais de Press?o e Temperatura Adquiridos Atrav?s de Sensores Permanentes em Po?os de Petr?leo

Pires, Paulo Roberto da Motta 06 February 2012 (has links)
Made available in DSpace on 2014-12-17T14:08:50Z (GMT). No. of bitstreams: 1 PauloRMP_capa_ate_pag32.pdf: 5057325 bytes, checksum: bf8da0b02ad06ee116c93344fb67e976 (MD5) Previous issue date: 2012-02-06 / Originally aimed at operational objectives, the continuous measurement of well bottomhole pressure and temperature, recorded by permanent downhole gauges (PDG), finds vast applicability in reservoir management. It contributes for the monitoring of well performance and makes it possible to estimate reservoir parameters on the long term. However, notwithstanding its unquestionable value, data from PDG is characterized by a large noise content. Moreover, the presence of outliers within valid signal measurements seems to be a major problem as well. In this work, the initial treatment of PDG signals is addressed, based on curve smoothing, self-organizing maps and the discrete wavelet transform. Additionally, a system based on the coupling of fuzzy clustering with feed-forward neural networks is proposed for transient detection. The obtained results were considered quite satisfactory for offshore wells and matched real requisites for utilization / Originalmente voltadas ao monitoramento da opera??o, as medi??es cont?nuas de press?o e temperatura no fundo de po?o, realizadas atrav?s de PDGs (do ingl?s, Permanent Downhole Gauges), encontram vasta aplicabilidade no gerenciamento de reservat?rios. Para tanto, permitem o monitoramento do desempenho de po?os e a estimativa de par?metros de reservat?rios no longo prazo. Contudo, a despeito de sua inquestion?vel utilidade, os dados adquiridos de PDG apresentam grande conte?do de ru?do. Outro aspecto igualmente desfavor?vel reside na ocorr?ncia de valores esp?rios (outliers) imersos entre as medidas registradas pelo PDG. O presente trabalho aborda o tratamento inicial de sinais de press?o e temperatura, mediante t?cnicas de suaviza??o, mapas auto-organiz?veis e transformada wavelet discreta. Ademais, prop?e-se um sistema de detec??o de transientes relevantes para an?lise no longo hist?rico de registros, baseado no acoplamento entre clusteriza??o fuzzy e redes neurais feed-forward. Os resultados alcan?ados mostraram-se de todo satisfat?rios para po?os marinhos, atendendo a requisitos reais de utiliza??o dos sinais registrados por PDGs
274

Controle inteligente de posição e velocidade para um robô escalador com rodas direcionáveis / Intelligent control position and velocity for a climber robot with steerable wheels

Santos, Higor Barbosa 21 August 2016 (has links)
This work presents an intelligent control of position and velocity to a climber robot developed to perform inspections of pressure vessels. The climber robot has steerable and magnetic wheels, which makes it similar to an omnidirectional robot due to its high maneuverability. The intelligent velocity control proposed uses the switching Fuzzy controllers according to the movement to be performed, which allow the use of all the robot's movement potential respecting the constraints imposed by the dynamic model and magnetic adhesion. Also, a position controller was developed in cascade with the speed controller to verify the navigation capability of the robot in a 2D environment. Simulated and experimental tests are applied for validation of control techniques implemented and they're presented at the end of this work. / Este trabalho apresenta um controle inteligente de posição e velocidade para um robô escalador desenvolvido para realizar inspeções em vasos de pressões. O robô escalador possui rodas direcionáveis e magnéticas, o que o torna similar a um robô omnidirecional em virtude da sua alta manobrabilidade. O controle inteligente de velocidade proposto utiliza o chaveamento de controladores Fuzzy de acordo com o movimento a ser realizado, que permitem a utilização de todo o potencial de movimentação do robô respeitando as restrições impostas pelo modelo dinâmico e pela adesão magnética. Também foi projetado um controlador de posição em cascata com o de velocidade para a verificação da capacidade de navegação do robô em um ambiente 2D. Testes simulados e experimentais são aplicados para a validação das técnicas de controle implementadas e são apresentados ao final do trabalho.
275

Mapas cognitivos fuzzy dinâmicos aplicados em vida artificial e robótica de enxame / Dynamic fuzzy cognitive maps applied to artificial life and swarm

Chrun, Ivan Rossato 17 October 2016 (has links)
ANP / Este trabalho propõe o uso de Mapas Cognitivos Fuzzy Dinâmicos (DFCM, do inglês Dynamic Fuzzy Cognitive Maps), uma evolução dos Mapas Cognitivos Fuzzy (FCM), para o desenvolvimento de sistemas autônomos para tomada de decisões. O FCM representa o conhecimento de forma simbólica, através de conceitos e relações causais dispostas em um grafo. Na sua versão clássica, os FCMs são usados no desenvolvimento de modelos estáticos, sendo inapropriados para o desenvolvimento de modelos temporais ou dinâmicos devido à ocorrência simultânea de todas as causalidades em uma estrutura fixa dos grafos, i.e., os conceitos e suas relações causais são invariantes no tempo. O DFCM utiliza o mesmo formalismo matemático do FCM através de grafos, acrescentando funcionalidades, como por exemplo, a capacidade de auto adaptação através de algoritmos de aprendizagem de máquina e a possibilidade de inclusão de novos tipos de conceitos e relações causais ao modelo FCM clássico. A partir dessas inclusões, é possível construir modelos DFCM para tomada de decisões dinâmicas, as quais são necessárias no desenvolvimento de ferramentas inteligentes em áreas de conhecimento correlatas à engenharia, de modo especifico a construção de modelos aplicados em Robótica Autônoma. Em especial, para as áreas de Robótica de Enxame e Vida artificial, como abordados nesta pesquisa. O sistema autônomo desenvolvido neste trabalho aborda problemas com diferentes objetivos (como desviar de obstáculos, coletar alvos ou alimentos, explorar o ambiente), hierarquizando as ações necessárias para atingi-los, através do uso de uma arquitetura para o planejamento, inspirada no modelo clássico de Subsunção de Brooks, e uma máquina de estados para o gerenciamento das ações. Conceitos de aprendizagem de máquina, em especial Aprendizagem por Reforço, são empregadas no DFCM para a adaptação dinâmica das relações de casualidade, possibilitando o controlador a lidar com eventos não modelados a priori. A validação do controlador DFCM proposto é realizada por meio de experimentos simulados através de aplicações nas áreas supracitadas. / This dissertation proposes the use of Dynamic Fuzzy Cognitive Maps (DFCM), an evolution of Fuzzy Cognitive Maps (FCM), for the development of autonomous system to decision-taking. The FCM represents knowledge in a symbolic way, through concepts and causal relationships disposed in a graph. In its standard form, the FCMs are limited to the development of static models, in other words, classical FCMs are inappropriate for development of temporal or dynamic models due to the simultaneous occurrence of all causalities in a permanent structure, i.e., the concepts and the causal relationships are time-invariant. The DFCM uses the same mathematical formalism of the FCM, adding features to its predecessor, such as self-adaptation by means of machine learning algorithms and the possibility of inclusion of new types of concepts and causal relationships into the classical FCM model. From these inclusions, it is possible to develop DFCM models for dynamic decision-making problems, which are needed to the development of intelligent tools in engineering and other correlated areas, specifically, the construction of autonomous systems applied in Autonomous Robotic. In particular, to the areas of Swarm Robotics and Artificial Life, as approached in this research. The developed autonomous system deals with multi-objective problems (such as deviate from obstacle, collect target or feed, explore the environment), hierarchizing the actions needed to reach them, through the use of an architecture for planning, inspired by the Brook’s classical Subsumption model, and a state machine for the management of the actions. Learning machine algorithms, in particular Reinforcement Learning, are implemented in the DFCM to dynamically tune the causalities, enabling the controller to handle not modelled event a priori. The proposed DFCM model is validated by means of simulated experiments applied in the aforementioned areas.
276

Mapas cognitivos fuzzy dinâmicos aplicados em vida artificial e robótica de enxame / Dynamic fuzzy cognitive maps applied to artificial life and swarm

Chrun, Ivan Rossato 17 October 2016 (has links)
ANP / Este trabalho propõe o uso de Mapas Cognitivos Fuzzy Dinâmicos (DFCM, do inglês Dynamic Fuzzy Cognitive Maps), uma evolução dos Mapas Cognitivos Fuzzy (FCM), para o desenvolvimento de sistemas autônomos para tomada de decisões. O FCM representa o conhecimento de forma simbólica, através de conceitos e relações causais dispostas em um grafo. Na sua versão clássica, os FCMs são usados no desenvolvimento de modelos estáticos, sendo inapropriados para o desenvolvimento de modelos temporais ou dinâmicos devido à ocorrência simultânea de todas as causalidades em uma estrutura fixa dos grafos, i.e., os conceitos e suas relações causais são invariantes no tempo. O DFCM utiliza o mesmo formalismo matemático do FCM através de grafos, acrescentando funcionalidades, como por exemplo, a capacidade de auto adaptação através de algoritmos de aprendizagem de máquina e a possibilidade de inclusão de novos tipos de conceitos e relações causais ao modelo FCM clássico. A partir dessas inclusões, é possível construir modelos DFCM para tomada de decisões dinâmicas, as quais são necessárias no desenvolvimento de ferramentas inteligentes em áreas de conhecimento correlatas à engenharia, de modo especifico a construção de modelos aplicados em Robótica Autônoma. Em especial, para as áreas de Robótica de Enxame e Vida artificial, como abordados nesta pesquisa. O sistema autônomo desenvolvido neste trabalho aborda problemas com diferentes objetivos (como desviar de obstáculos, coletar alvos ou alimentos, explorar o ambiente), hierarquizando as ações necessárias para atingi-los, através do uso de uma arquitetura para o planejamento, inspirada no modelo clássico de Subsunção de Brooks, e uma máquina de estados para o gerenciamento das ações. Conceitos de aprendizagem de máquina, em especial Aprendizagem por Reforço, são empregadas no DFCM para a adaptação dinâmica das relações de casualidade, possibilitando o controlador a lidar com eventos não modelados a priori. A validação do controlador DFCM proposto é realizada por meio de experimentos simulados através de aplicações nas áreas supracitadas. / This dissertation proposes the use of Dynamic Fuzzy Cognitive Maps (DFCM), an evolution of Fuzzy Cognitive Maps (FCM), for the development of autonomous system to decision-taking. The FCM represents knowledge in a symbolic way, through concepts and causal relationships disposed in a graph. In its standard form, the FCMs are limited to the development of static models, in other words, classical FCMs are inappropriate for development of temporal or dynamic models due to the simultaneous occurrence of all causalities in a permanent structure, i.e., the concepts and the causal relationships are time-invariant. The DFCM uses the same mathematical formalism of the FCM, adding features to its predecessor, such as self-adaptation by means of machine learning algorithms and the possibility of inclusion of new types of concepts and causal relationships into the classical FCM model. From these inclusions, it is possible to develop DFCM models for dynamic decision-making problems, which are needed to the development of intelligent tools in engineering and other correlated areas, specifically, the construction of autonomous systems applied in Autonomous Robotic. In particular, to the areas of Swarm Robotics and Artificial Life, as approached in this research. The developed autonomous system deals with multi-objective problems (such as deviate from obstacle, collect target or feed, explore the environment), hierarchizing the actions needed to reach them, through the use of an architecture for planning, inspired by the Brook’s classical Subsumption model, and a state machine for the management of the actions. Learning machine algorithms, in particular Reinforcement Learning, are implemented in the DFCM to dynamically tune the causalities, enabling the controller to handle not modelled event a priori. The proposed DFCM model is validated by means of simulated experiments applied in the aforementioned areas.
277

Uma abordagem fuzzy para a estabilização de uma classe de sistemas não-lineares com saltos Markovianos / A fuzzy stabilization approach for a class of Markovian jump nonlinear systems

Natache do Socorro Dias Arrifano 30 April 2004 (has links)
Neste trabalho é apresentada uma abordagem fuzzy para a estabilização de uma classe de sistemas não-lineares com parâmetros descritos por saltos Markovianos. Uma nova modelagem fuzzy de sistemas é formulada para representar esta classe de sistemas na vizinhança de pontos de operação escolhidos. A estrutura deste sistema fuzzy é composta de dois níveis, um para descrição dos saltos Markovianos e outro para descrição das não-linearidades no estado do sistema. Condições suficientes para a estabilização estocástica do sistema fuzzy considerado são derivadas usando uma função de Lyapunov acoplada. O projeto de controle fuzzy é então formulado a partir de um conjunto de desigualdades matriciais lineares. Em adição, um exemplo de aplicação, envolvendo a representação da operação de um sistema elétrico de potência em esquema de co-geração por um sistema com saltos Markovianos, é construído para validação dos resultados. / This work deals with the fuzzy-model-based control design for a class of Markovian jump nonlinear systems. A new fuzzy system modeling is proposed to approximate the dynamics of this class of systems. The structure of the new fuzzy system is composed of two levels, a crisp level which describes the Markovian jumps and a fuzzy level which describes the system nonlinearities. A sufficient condition on the existence of a stochastically stabilizing controller using a Lyapunov function approach is presented. The fuzzy-model-based control design is formulated in terms of a set of linear matrix inequalities. In addition, simulation results for a single-machine infinite-bus power system in cogeneration scheme, whose operation is modeled as an Markovian jump nonlinear system, are presented to illustrate the applicability of the technique.
278

Sistemas inteligentes aplicados às redes ópticas passivas com acesso múltiplo por divisão de código OCDMA-PON / The application of intelligent systems in passive optical networks based on optical code division multiple access OCDMA-PON

José Valdemir dos Reis Júnior 14 May 2015 (has links)
As redes ópticas passivas (PON), em virtude da oferta de maior largura de banda a custos relativamente baixos, vêm se destacando como possível candidata para suprir a demanda dos novos serviços como, tráfego de voz, vídeo, dados e de serviços móveis, exigidos pelos usuários finais. Uma importante candidata, para realizar o controle de acesso nas PONs, é a técnica de acesso múltiplo por divisão de código óptico (OCDMA), por apresentar características relevantes, como maior segurança e capacidade flexível sob demanda. No entanto, agentes físicos externos, como as variações de temperatura ambiental no enlace, exercem uma influência considerável sobre as condições de operação das redes ópticas. Especificamente, nas OCDMA-PONs, os efeitos da variação de temperatura ambiental no enlace de transmissão, afetam o valor do pico do autocorrelação do código OCDMA a ser detectado, degradando a qualidade de serviço (QoS), além do aumento da taxa de erro de bit (BER) do sistema. O presente trabalho apresenta duas novas propostas de técnicas, utilizando sistemas inteligentes, mais precisamente, controladores lógicos fuzzy (FLC) aplicados nos transmissores e nos receptores das OCDMA-PONs, com o objetivo de mitigar os efeitos de variação de temperatura. Os resultados das simulações mostram que o desempenho da rede é melhorado quando as abordagens propostas são empregadas. Por exemplo, para a distância de propagação de 10 km e variações de temperatura de 20°C, o sistema com FLC, suporta 40 usuários simultâneos com a BER = 10-9, enquanto que, sem FLC, acomoda apenas 10. Ainda neste trabalho, é proposta uma nova técnica de classificação de códigos OCDMA, com o uso de redes neurais artificiais, mais precisamente, mapas auto-organizáveis de Kohonen (SOM), importante para que o sistema de gerenciamento da rede possa oferecer uma maior segurança para os usuários. Por fim, sem o uso de técnica inteligente, é apresentada, uma nova proposta de código OCDMA, cujo formalismo desenvolvido, permite generalizar a obtenção de código com propriedades distintas, como diversas ponderações e comprimentos de códigos. / Passive optical networks (PON), due to the provision of higher bandwidth at relatively low cost, have been excelling as a possible candidate to meet the demand of new services, such as voice traffic, video, data and mobile services, as required by end users. An important candidate to perform access control in PONs, is the Optical Code-Division Multiple-Access (OCDMA) technique, due to relevant characteristics, such as improved security and flexible capacity on demand. However, external physical agents, such as variations in environmental temperature on the Fiber Optic Link, have considerable influence on the operating conditions of optical networks. Specifically, in OCDMA-PONs, the effects of environmental temperature variation in the transmission link affect the peak value on the autocorrelation of the OCDMA code to be detected, degrading the quality of service (QoS), in addition to increasing the Bit Error Rate (BER) of the system. This thesis presents two new proposals of techniques using intelligent systems, more precisely, Fuzzy Logic Controllers (FLC) applied on the transmitters and receivers of OCDMA-PONs, in order to mitigate the effects of temperature variation. The simulation results show that the network performance is improved when the proposed approaches are employed. For example, for the propagation distance of 10 kilometers and temperature variations of 20°C, the FLC system supports 40 simultaneous users at BER = 10-9, whereas without the FLC, the system can accommodate only 10. Furthermore, in this work is proposed a new technique of OCDMA codes classification, using Artificial Neural Networks (ANN), more precisely, the Self-Organizing Maps (SOM) of Kohonen, important for the network management system to provide increased security for users. Finally, without the use of intelligent technique, it is presented a new proposal of OCDMA code, whose formalism developed, allows to generalize the code acquisition with distinct properties, such as different weights and length codes.

Page generated in 0.0804 seconds