• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Management of an intelligent argumentation network for a web-based collaborative engineering design environment

Zheng, Man, January 2007 (has links) (PDF)
Thesis (M.S.)--University of Missouri--Rolla, 2007. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed April 22, 2008) Includes bibliographical references (p. 33-35).
2

Highly redundant and fault tolerant actuator system : control, condition monitoring and experimental validation

Antong, Hasmawati P. January 2017 (has links)
This thesis is concerned with developing a control and condition monitoring system for a class of fault tolerant actuators with high levels of redundancy. The High Redundancy Actuator (HRA) is a concept inspired by biomimetics that aims to provide fault tolerance using relatively large numbers of actuation elements which are assembled in parallel and series configurations to form a single actuator. Each actuation element provides a small contribution to the overall force and displacement of the system. Since the capability of each actuation element is small, the effect of faults within the individual element of the overall system is also small. Hence, the HRA will gracefully degrade instead of going from fully functional to total failure in the presence of faults. Previous research on HRA using electromechanical technology has focused on a relatively low number of actuation elements (i.e. 4 elements), which were controlled with multiple loop control methods. The objective of this thesis is to expand upon this, by considering an HRA with a larger number of actuation elements (i.e. 12 elements). First, a mathematical model of a general n-by-m HRA is derived from first principles. This method can be used to represent any size of electromechanical HRA with actuation elements arranged in a matrix form. Then, a mathematical model of a 4-by-3 HRA is obtained from the general n-by-m model and verified experimentally using the HRA test rig. This actuator model is then used as a foundation for the controller design and condition monitoring development. For control design, two classical and control method-based controllers are compared with an H_infinity approach. The objective for the control design is to make the HRA track a position demand signal in both health and faulty conditions. For the classical PI controller design, the first approach uses twelve local controllers (1 per actuator) and the second uses only a single global controller. For the H_infinity control design, a mixed sensitivity functions is used to obtain good tracking performance and robustness to modelling uncertainties. Both of these methods demonstrate good tracking performance, with a slower response in the presence of faults. As expected, the H_infinity control method's robustness to modelling uncertainties, results in a smaller performance degradation in the presence of faults, compared with the classical designs. Unlike previous work, the thesis also makes a novel contribution to the condition monitoring of HRA. The proposed algorithm does not require the use of multiple sensors. The condition monitoring scheme is based on least-squares parameter estimation and fuzzy logic inference. The least-squares parameter estimation estimates the physical parameters of the electromechanical actuator based on input-output data collected from real-time experiments, while the fuzzy logic inference determines the health condition of the actuator based on the estimated physical parameters. Hence, overall, a new approach to both control and monitoring of an HRA is proposed and demonstrated on a twelve elements HRA test rig.
3

A fuzzy logic micro-controller enabled system for the monitoring of micro climatic parameters of a greenhouse

Sibiya, Malusi 10 1900 (has links)
Motivation behind this master dissertation is to introduce a novel study called " A fuzzy logic micro-controller enabled system for the monitoring of micro-climatic parameters of a greenhouse" which is capable of intelligently monitoring and controlling the greenhouse climate conditions in a preprogrammed manner. The proposed system consists of three stations: Sensor Station, Coordinator Station, and Central Station. To allow for better monitoring of the climate condition in the greenhouse, fuzzy logic controller is embedded in the system as the system becomes more intelligent with fuzzy decision making. The sensor station is equipped with several sensor elements such as MQ-7 (Carbon monoxide sensor), DHT11 (Temperature and humidity sensor), LDR (light sensor), grove moisture sensor (soil moisture sensor). The communication between the sensor station and the coordinator station is achieved through XBee wireless modules connected to the Arduino Mega and the communication between coordinator station and the central station is also achieved via XBee wireless modules connected to the Arduino Mega. The experiments and tests of the system were carried out at one of IKHALA TVET COLLEGE’s greenhouses that is used for learning purposes by students studying agriculture at the college. The purpose of conducting the experiments at the college’s green house was to determine the functionality and reliability of the designed wireless sensor network using ZigBee wireless technology. The experiment result indicated that XBee modules could be used as one solution to lower the installation cost, increase flexibility and reliability and create a greenhouse management system that is only based on wireless nodes. The experiment result also showed that the system became more intelligent if fuzzy logic was used by the system for decision making. The overall system design showed advantages in cost, size, power, flexibility and intelligence. It is trusted that the results of the project will give the chance for further research and development of a low cost greenhouse monitoring system for commercial use. / Electrical and Mining Engineering / M. Tech. (Electrical Engineering)

Page generated in 0.0712 seconds