• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Information processing in liver glucose metabolism

Butler, Mark Henry January 1999 (has links)
No description available.
2

A fuzzy logic approach to model delays in construction projects

Al-Humaidi, Hanouf M. 30 July 2007 (has links)
No description available.
3

Generic electric propulsion drive : a thesis in the partial fulfilment of the requirements for the degree of Masters of Engineering in Mechatronics at Massey University, Turitea Campus, Palmerston North, New Zealand

Edmondson, Michael Charles January 2008 (has links)
Considerable resources worldwide are invested in the research and development of future transportation technology. The foreseen direction and therefore research of future personalised transportation is focused on Battery Electric Vehicles (BEV) or hybrid combinations that use hydrogen fuel cells. These new transport energy systems are consider most to replace the current vehicles powered by the internal combustion engine (ICE). The research work presented in this thesis mainly focuses on the development of a software control system for future BEV prototype vehicles - a generic intelligent control system (GICS). The system design adopts a modular design concept and intelligent control. The whole system consists of four modules being communication, power supply, motor driver and transmission module. Each module uses a microcontroller as the brain and builds an embedded control system within the module. The control and communication between the modules is based on a group of specific parameters and the status of a state machine. In order to effectively implement intelligent control and simplify the system structure and programming, a generic intelligent fuzzy logic model that can be configured to a specific application with a near real-time buffered communication methodology is developed. The tests made on the fuzzy control model and the near real-time buffered communication gave a very positive outcome. The implementation of the fuzzy control and the communication methodology in each of the modules results in a communication between the modules with a steady speed, better reliability and system stability. These modules link together through the communication channels and form a multi-agent collaborative system (MACS). As the controllers are designed based on the parametric concept, the system is able to be implemented to future new modules and therefore allow prototype vehicle control systems to be developed more efficiently. The MACS is based on the core components of the control system - fuzzy logic controller (FLC), Serial Communication and Analogue input control software modules. Further work is carried out as an attempt to integrate the control software with a hardware design for a generic electric propulsion drive (GEPD). This thesis therefore outlines the design and considerations in software and hardware integration in addition to the GICS. The output from this thesis being the construction of soft programming modules for embedded microcontroller based control system has been accepted and presented at two international conferences; one in Wellington, New Zealand[1] the second in Acireale, Italy[2].
4

Generic electric propulsion drive : a thesis in the partial fulfilment of the requirements for the degree of Masters of Engineering in Mechatronics at Massey University, Turitea Campus, Palmerston North, New Zealand

Edmondson, Michael Charles January 2008 (has links)
Considerable resources worldwide are invested in the research and development of future transportation technology. The foreseen direction and therefore research of future personalised transportation is focused on Battery Electric Vehicles (BEV) or hybrid combinations that use hydrogen fuel cells. These new transport energy systems are consider most to replace the current vehicles powered by the internal combustion engine (ICE). The research work presented in this thesis mainly focuses on the development of a software control system for future BEV prototype vehicles - a generic intelligent control system (GICS). The system design adopts a modular design concept and intelligent control. The whole system consists of four modules being communication, power supply, motor driver and transmission module. Each module uses a microcontroller as the brain and builds an embedded control system within the module. The control and communication between the modules is based on a group of specific parameters and the status of a state machine. In order to effectively implement intelligent control and simplify the system structure and programming, a generic intelligent fuzzy logic model that can be configured to a specific application with a near real-time buffered communication methodology is developed. The tests made on the fuzzy control model and the near real-time buffered communication gave a very positive outcome. The implementation of the fuzzy control and the communication methodology in each of the modules results in a communication between the modules with a steady speed, better reliability and system stability. These modules link together through the communication channels and form a multi-agent collaborative system (MACS). As the controllers are designed based on the parametric concept, the system is able to be implemented to future new modules and therefore allow prototype vehicle control systems to be developed more efficiently. The MACS is based on the core components of the control system - fuzzy logic controller (FLC), Serial Communication and Analogue input control software modules. Further work is carried out as an attempt to integrate the control software with a hardware design for a generic electric propulsion drive (GEPD). This thesis therefore outlines the design and considerations in software and hardware integration in addition to the GICS. The output from this thesis being the construction of soft programming modules for embedded microcontroller based control system has been accepted and presented at two international conferences; one in Wellington, New Zealand[1] the second in Acireale, Italy[2].
5

Generic electric propulsion drive : a thesis in the partial fulfilment of the requirements for the degree of Masters of Engineering in Mechatronics at Massey University, Turitea Campus, Palmerston North, New Zealand

Edmondson, Michael Charles January 2008 (has links)
Considerable resources worldwide are invested in the research and development of future transportation technology. The foreseen direction and therefore research of future personalised transportation is focused on Battery Electric Vehicles (BEV) or hybrid combinations that use hydrogen fuel cells. These new transport energy systems are consider most to replace the current vehicles powered by the internal combustion engine (ICE). The research work presented in this thesis mainly focuses on the development of a software control system for future BEV prototype vehicles - a generic intelligent control system (GICS). The system design adopts a modular design concept and intelligent control. The whole system consists of four modules being communication, power supply, motor driver and transmission module. Each module uses a microcontroller as the brain and builds an embedded control system within the module. The control and communication between the modules is based on a group of specific parameters and the status of a state machine. In order to effectively implement intelligent control and simplify the system structure and programming, a generic intelligent fuzzy logic model that can be configured to a specific application with a near real-time buffered communication methodology is developed. The tests made on the fuzzy control model and the near real-time buffered communication gave a very positive outcome. The implementation of the fuzzy control and the communication methodology in each of the modules results in a communication between the modules with a steady speed, better reliability and system stability. These modules link together through the communication channels and form a multi-agent collaborative system (MACS). As the controllers are designed based on the parametric concept, the system is able to be implemented to future new modules and therefore allow prototype vehicle control systems to be developed more efficiently. The MACS is based on the core components of the control system - fuzzy logic controller (FLC), Serial Communication and Analogue input control software modules. Further work is carried out as an attempt to integrate the control software with a hardware design for a generic electric propulsion drive (GEPD). This thesis therefore outlines the design and considerations in software and hardware integration in addition to the GICS. The output from this thesis being the construction of soft programming modules for embedded microcontroller based control system has been accepted and presented at two international conferences; one in Wellington, New Zealand[1] the second in Acireale, Italy[2].
6

Prédire la chute de la personne âgée : apports des modèles mathématiques non-linéaires / Predicting of falls in the elderly : using of non-linear of mathematical models

Kabeshova, Anastasiia 14 October 2015 (has links)
En 2015, la chute de la personne âgée reste toujours un événement majeur, quel que soit l’angle de vue considéré. Elle est toujours associée à une forte morbi-mortalité, nombreuses incapacités, altération la qualité de vie du chuteur, mais aussi, en raison du vieillissement de la population, avec le nombre croissant de chuteurs requérant une prise en charge médicale. Cette situation repose en bonne partie sur notre incapacité à identifier la personne âgée qui est le plus à risque de chute, cette étape étant la première de toute stratégie d’intervention efficace et efficiente. Il est donc nécessaire voir obligatoire aujourd’hui de redoubler nos efforts sur l’amélioration de la prédiction de la chute. En contrepartie de nouvelles opportunités s’ouvrent à nous en raison de l’implantation et de l’informatisation des données médicales. La chute doit être considérée comme un événement chaotique et sa prédiction doit se faire via de nouveaux modèles mathématiques intégrant la particularité de ce comportement. C’est pour cette raison que des méthodes d’analyse basée sur l'intelligence artificielle semblent être une solution appropriée. C’est à partir de ce constat que nous avons émis l’hypothèse que les modèles mathématiques issus de l’intelligence artificielle devaient permettre d’atteindre une qualité de la prédiction meilleure. L’objectif principal de cette thèse est d’étudier la qualité de la prédiction de la chute, récurrente ou non, chez des personnes âgées de 65 ans et plus, en utilisant les réseaux neuronaux et un modèle de logique floue, en les comparant avec des modèles mathématiques linéaires utilisés classiquement dans la littérature. L’ensemble de nos résultats confirme notre hypothèse de départ en montrant que le choix du modèle mathématique influence la qualité de la prédiction de la chute, les modèles non linéaires, et notamment les réseaux neuronaux et les systèmes de logique flous, étant plus performants que les modèles linéaires pour la prédiction des chutes surtout lorsqu’elles sont récurrentes. / Falls in the elderly are still a major issue in 2015 because they are associated with high rate of morbidity, mortality and disability, which affect the quality of life. From the patient’s perspective, it is still associated with high morbidity, mortality and disability, which affect the quality of life. The number of fallers requiring medical and/or social care is growing up due to aging population. This fact seems paradoxical since during the recent years the knowledge about the mechanisms of falls and the quality of interventions to support fallers significantly increased. This is largely based on our inability to predict correctly the risk of falling among the elderly person, knowing that this is the first step of any efficient and effective intervention strategies. Therefore it is necessary today to double our efforts in improving the prediction of falls. Nonetheless, new opportunities and advanced technologies provide to us the possibility of computerizing of medical data and research, and also to improve prediction of falls using new approaches. A fall should be considered as a chaotic event, and its prediction should be done via new mathematical models incorporating the feature of this behaviour. Thus, the methods ofartificial intelligence-based analysis seem to be an appropriate solution to analyse complex medical data. These artificial intelligence techniques have been already used in many medical areas, but rarely in the field of fall prediction. Artificial neural networks are the most commonly used methods while other promising techniques based on fuzzy logic are less often applied.Based on this observation we have formulated the hypothesis that non-linear mathematical models using artificial intelligence are the models, which are the most likely to achieve the bestquality of the prediction. The main objective of this thesis is to study the quality of theprediction of falls, recurrent or not, among the adults aged 65 years and more,applying neuralnetworks and fuzzy logic models, and comparing them either among themselves or with the linear mathematical models conventionally employed in the literature for fall prediction. The first cross-sectional study was conducted by using a decision tree to explore the risk of recurrent falls in various combinations of fall risk factors compared to a logistic regression model. The second study was designed to examine the efficiency of artificial neural networks (Multilayer Perceptron and Neuroevolution of Augmenting Topologies) to classify recurrent and nonrecurrent fallers by using a set of clinical characteristics corresponding to risk factors measured among seniors living in the community. Finally, in the third study we compared the results of different statistical methods (linear and nonlinear) in order to identify the risk of falls using 7 clinical variables, separating the collection mode (retrospective and prospective) of the fall and its recurrence. The results confirm our hypothesis showing that the choice of the mathematical model affects the quality of fall prediction. Nonlinear models, such as neural networks and fuzzy logic systems, are more efficient than linear models for the prediction of falls especially for recurrent falls. However, the results show that the balance between different criteria used to judge the quality of the forecast (sensitivity, specificity, positive and negative predictive value, area under the curve, positive and negative likelihood ratio, and accuracy) has not been always correct, emphasizing the need to continue the development of the models whose intelligence should specifically predict the fall.

Page generated in 0.0852 seconds