• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Síntese de árvores de padrões Fuzzy através de Programação Genética Cartesiana. / Synthesis of Fuzzy pattern trees by Cartesian Genetic Programming.

Anderson Rodrigues dos Santos 30 July 2014 (has links)
Esta dissertação apresenta um sistema de indução de classificadores fuzzy. Ao invés de utilizar a abordagem tradicional de sistemas fuzzy baseados em regras, foi utilizado o modelo de Árvore de Padrões Fuzzy(APF), que é um modelo hierárquico, com uma estrutura baseada em árvores que possuem como nós internos operadores lógicos fuzzy e as folhas são compostas pela associação de termos fuzzy com os atributos de entrada. O classificador foi obtido sintetizando uma árvore para cada classe, esta árvore será uma descrição lógica da classe o que permite analisar e interpretar como é feita a classificação. O método de aprendizado originalmente concebido para a APF foi substituído pela Programação Genética Cartesiana com o intuito de explorar melhor o espaço de busca. O classificador APF foi comparado com as Máquinas de Vetores de Suporte, K-Vizinhos mais próximos, florestas aleatórias e outros métodos Fuzzy-Genéticos em diversas bases de dados do UCI Machine Learning Repository e observou-se que o classificador APF apresenta resultados competitivos. Ele também foi comparado com o método de aprendizado original e obteve resultados comparáveis com árvores mais compactas e com um menor número de avaliações. / This work presents a system for induction of fuzzy classifiers. Instead of the traditional fuzzy based rules, it was used a model called Fuzzy Pattern Trees (FPT), which is a hierarchical tree-based model, having as internal nodes, fuzzy logical operators and the leaves are composed of a combination of fuzzy terms with the input attributes. The classifier was obtained by creating a tree for each class, this tree will be a logic class description which allows the interpretation of the results. The learning method originally designed for FPT was replaced by Cartesian Genetic Programming in order to provide a better exploration of the search space. The FPT classifier was compared against Support Vector Machines, K Nearest Neighbour, Random Forests and others Fuzzy-Genetics methods on several datasets from the UCI Machine Learning Repository and it presented competitive results. It was also compared with Fuzzy Pattern trees generated by the former learning method and presented comparable results with smaller trees and a lower number of functions evaluations.
2

Síntese de árvores de padrões Fuzzy através de Programação Genética Cartesiana. / Synthesis of Fuzzy pattern trees by Cartesian Genetic Programming.

Anderson Rodrigues dos Santos 30 July 2014 (has links)
Esta dissertação apresenta um sistema de indução de classificadores fuzzy. Ao invés de utilizar a abordagem tradicional de sistemas fuzzy baseados em regras, foi utilizado o modelo de Árvore de Padrões Fuzzy(APF), que é um modelo hierárquico, com uma estrutura baseada em árvores que possuem como nós internos operadores lógicos fuzzy e as folhas são compostas pela associação de termos fuzzy com os atributos de entrada. O classificador foi obtido sintetizando uma árvore para cada classe, esta árvore será uma descrição lógica da classe o que permite analisar e interpretar como é feita a classificação. O método de aprendizado originalmente concebido para a APF foi substituído pela Programação Genética Cartesiana com o intuito de explorar melhor o espaço de busca. O classificador APF foi comparado com as Máquinas de Vetores de Suporte, K-Vizinhos mais próximos, florestas aleatórias e outros métodos Fuzzy-Genéticos em diversas bases de dados do UCI Machine Learning Repository e observou-se que o classificador APF apresenta resultados competitivos. Ele também foi comparado com o método de aprendizado original e obteve resultados comparáveis com árvores mais compactas e com um menor número de avaliações. / This work presents a system for induction of fuzzy classifiers. Instead of the traditional fuzzy based rules, it was used a model called Fuzzy Pattern Trees (FPT), which is a hierarchical tree-based model, having as internal nodes, fuzzy logical operators and the leaves are composed of a combination of fuzzy terms with the input attributes. The classifier was obtained by creating a tree for each class, this tree will be a logic class description which allows the interpretation of the results. The learning method originally designed for FPT was replaced by Cartesian Genetic Programming in order to provide a better exploration of the search space. The FPT classifier was compared against Support Vector Machines, K Nearest Neighbour, Random Forests and others Fuzzy-Genetics methods on several datasets from the UCI Machine Learning Repository and it presented competitive results. It was also compared with Fuzzy Pattern trees generated by the former learning method and presented comparable results with smaller trees and a lower number of functions evaluations.

Page generated in 0.0654 seconds