• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Framework for Autonomous Generation of Strategies in Satisfiability Modulo Theories / Un cadre pour la génération autonome de stratégies dans la satisfiabilité modulo des théories

Galvez Ramirez, Nicolas 19 December 2018 (has links)
La génération de stratégies pour les solveurs en Satisfiabilité Modulo des Théories (SMT) nécessite des outils théoriques et pratiques qui permettent aux utilisateurs d’exercer un contrôle stratégique sur les aspects heuristiques fondamentaux des solveurs de SMT, tout en garantissant leur performance. Nous nous intéressons dans cette thèse au solveur Z3 , l’un des plus efficaces lors des compétitions SMT (SMT-COMP). Dans les solveurs SMT, la définition d’une stratégie repose sur un ensemble de composants et paramètres pouvant être agencés et configurés afin de guider la recherche d’une preuve de (in)satisfiabilité d’une instance donnée. Dans cette thèse, nous abordons ce défi en définissant un cadre pour la génération autonome de stratégies pour Z3, c’est-à-dire un algorithme qui permet de construire automatiquement des stratégies sans faire appel à des connaissances d’expertes. Ce cadre général utilise une approche évolutionnaire (programmation génétique), incluant un système à base de règles. Ces règles formalisent la modification de stratégies par des principes de réécriture, les algorithmes évolutionnaires servant de moteur pour les appliquer. Cette couche intermédiaire permettra d’appliquer n’importe quel algorithme ou opérateur sans qu’il soit nécessaire de modifier sa structure, afin d’introduire de nouvelles informations sur les stratégies. Des expérimentations sont menées sur les jeux classiques de la compétition SMT-COMP. / The Strategy Challenge in Satisfiability Modulo Theories (SMT) claims to build theoretical and practical tools allowing users to exert strategic control over core heuristic aspects of high-performance SMT solvers. In this work, we focus in Z3 Theorem Prover: one of the most efficient SMT solver according to the SMT Competition, SMT-COMP. In SMT solvers, the definition of a strategy relies on a set of tools that can be scheduled and configured in order to guide the search for a (un)satisfiability proof of a given instance. In this thesis, we address the Strategy Challenge in SMT defining a framework for the autonomous generation of strategies in Z3, i.e. a practical system to automatically generate SMT strategies without the use of expert knowledge. This framework is applied through an incremental evolutionary approach starting from basic algorithms to more complex genetic constructions. This framework formalise strategies modification as rewriting rules, where algorithms acts as enginess to apply them. This intermediate layer, will allow apply any algorithm or operator with no need to being structurally modified, in order to introduce new information in strategies. Validation is done through experiments on classic benchmarks of the SMT-COMP.
2

Une approche heuristique pour l’apprentissage de transformations de modèles complexes à partir d’exemples

Baki, Islem 12 1900 (has links)
L’ingénierie dirigée par les modèles (IDM) est un paradigme d’ingénierie du logiciel bien établi, qui préconise l’utilisation de modèles comme artéfacts de premier ordre dans les activités de développement et de maintenance du logiciel. La manipulation de plusieurs modèles durant le cycle de vie du logiciel motive l’usage de transformations de modèles (TM) afin d’automatiser les opérations de génération et de mise à jour des modèles lorsque cela est possible. L’écriture de transformations de modèles demeure cependant une tâche ardue, qui requiert à la fois beaucoup de connaissances et d’efforts, remettant ainsi en question les avantages apportés par l’IDM. Afin de faire face à cette problématique, de nombreux travaux de recherche se sont intéressés à l’automatisation des TM. L’apprentissage de transformations de modèles par l’exemple (TMPE) constitue, à cet égard, une approche prometteuse. La TMPE a pour objectif d’apprendre des programmes de transformation de modèles à partir d’un ensemble de paires de modèles sources et cibles fournis en guise d’exemples. Dans ce travail, nous proposons un processus d’apprentissage de transformations de modèles par l’exemple. Ce dernier vise à apprendre des transformations de modèles complexes en s’attaquant à trois exigences constatées, à savoir, l’exploration du contexte dans le modèle source, la vérification de valeurs d’attributs sources et la dérivation d’attributs cibles complexes. Nous validons notre approche de manière expérimentale sur 7 cas de transformations de modèles. Trois des sept transformations apprises permettent d’obtenir des modèles cibles parfaits. De plus, une précision et un rappel supérieurs à 90% sont enregistrés au niveau des modèles cibles obtenus par les quatre transformations restantes. / Model-driven engineering (MDE) is a well-established software engineering paradigm that promotes models as main artifacts in software development and maintenance activities. As several models may be manipulated during the software life-cycle, model transformations (MT) ensure their coherence by automating model generation and update tasks when possible. However, writing model transformations remains a difficult task that requires much knowledge and effort that detract from the benefits brought by the MDE paradigm. To address this issue, much research effort has been directed toward MT automation. Model Transformation by Example (MTBE) is, in this regard, a promising approach. MTBE aims to learn transformation programs starting from a set of source and target model pairs supplied as examples. In this work, we propose a process to learn model transformations from examples. Our process aims to learn complex MT by tackling three observed requirements, namely, context exploration of the source model, source attribute value testing, and complex target attribute derivation. We experimentally evaluate our approach on seven model transformation problems. The learned transformation programs are able to produce perfect target models in three transformation cases, whereas, precision and recall higher than 90% are recorded for the four remaining ones.

Page generated in 0.109 seconds