• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyse et modélisation de la surface corticale et de l'architecture sous-jacente des axones

St-Onge, Etienne January 2016 (has links)
L'imagerie par résonance magnétique (IRM) est la seule technique non invasive d'imagerie médicale qui permet la reconstruction de l'architecture neuronale du cerveau. Cette approche est fondamentale pour le domaine des neurosciences, qui tente continuellement de développer de nouveaux outils et modèles pour mieux détecter et étudier les maladies mentales et neurodégénératives, les troubles du développement, les tumeurs, les commotions, ainsi que plusieurs autres pathologies du cerveau humain. L'IRM de diffusion (IRMd) combinée à la tractographie rend possible l'extraction de l'information structurelle sur les fibres nerveuses. Ces méthodes permettent de visualiser, d'analyser et d'évaluer l'intégrité de la matière blanche, ceci afin d'identifier la présence d'anomalies le long des axones, causées par la démyélinisation, la mort axonale ou d'autres détériorations. La problématique est que ces méthodes ont une faible résolution comparée à une surface ou une image anatomique IRM. L'IRMd est limitée par son faible rapport signal sur bruit (SNR) et l'effet de volume partiel causé par la discrétisation. Certains modèles géométriques ont récemment été utilisés pour mieux modéliser l'expansion corticale, la topologie des plis corticaux et l'organisation des couches de la matière grise. Toutefois, ces modèles fournissent seulement de l'information sur l'organisation du cortex et non pas sur la matière blanche comme telle, ni sur la structure des neurones. Cette recherche vise à modéliser la structure complexe des fibres de la matière blanche à l'aide d'équations différentielles et de flots géométriques. Ce mémoire présente différents modèles mathématiques (surface et flot) ainsi que leur intégration avec la méthode des différences finies. Nous proposons également d'utiliser un maillage de la surface corticale afin d'améliorer la précision de l'IRMd et de limiter l'effet de volume partiel. Validée qualitativement et quantitativement avec l'aide d'acquisitions hautes résolutions du Human Connectome Project (HCP) et d'un jeu de données de reproductibilité de test-retest, cette méthode permet d'améliorer la tractographie. Les résultats de ces travaux permettront de faire le pont entre l'imagerie de diffusion (IRMd) et les modalités propres à l'imagerie fonctionnelle (EEG, MEG, IRMf et TMS), pour lesquelles la structure des axones situés sous le cortex est essentielle pour bien modéliser et comprendre le fonctionnement cérébral.
2

Opérateur de Laplace–Beltrami discret sur les surfaces digitales / Discrete Laplace--Beltrami Operator on Digital Surfaces

Caissard, Thomas 13 December 2018 (has links)
La problématique centrale de cette thèse est l'élaboration d'un opérateur de Laplace--Beltrami discret sur les surfaces digitales. Ces surfaces proviennent de la théorie de la géométrie discrète, c’est-à-dire la géométrie qui s'intéresse à des sous-ensembles des entiers relatifs. Nous nous plaçons ici dans un cadre théorique où les surfaces digitales sont le résultat d'une approximation, ou processus de discrétisation, d'une surface continue sous-jacente. Cette méthode permet à la fois de prouver des théorèmes de convergence des quantités discrètes vers les quantités continues, mais aussi, par des analyses numériques, de confirmer expérimentalement ces résultats. Pour la discrétisation de l’opérateur, nous faisons face à deux problèmes : d'un côté, notre surface n'est qu'une approximation de la surface continue sous-jacente, et de l'autre côté, l'estimation triviale de quantités géométriques sur la surface digitale ne nous apporte pas en général une bonne estimation de cette quantité. Nous possédons déjà des réponses au second problème : ces dernières années, de nombreux articles se sont attachés à développer des méthodes pour approximer certaines quantités géométriques sur les surfaces digitales (comme par exemple les normales ou bien la courbure), méthodes que nous décrirons dans cette thèse. Ces nouvelles techniques d'approximation nous permettent d'injecter des informations de mesure sur les éléments de notre surface. Nous utilisons donc l'estimation de normales pour répondre au premier problème, qui nous permet en fait d'approximer de façon précise le plan tangent en un point de la surface et, via une méthode d'intégration, palier à des problèmes topologiques liées à la surface discrète. Nous présentons un résultat théorique de convergence du nouvel opérateur discrétisé, puis nous illustrons ensuite ses propriétés à l’aide d’une analyse numérique de l’opérateur. Nous effectuons une comparaison détaillée du nouvel opérateur par rapport à ceux de la littérature adaptés sur les surfaces digitales, ce qui nous permet, au moins pour la convergence, de montrer que seul notre opérateur possède cette propriété. Nous illustrons également l’opérateur via quelques unes de ces applications comme sa décomposition spectrale ou bien encore le flot de courbure moyenne / The central issue of this thesis is the development of a discrete Laplace--Beltrami operator on digital surfaces. These surfaces come from the theory of discrete geometry, i.e. geometry that focuses on subsets of relative integers. We place ourselves here in a theoretical framework where digital surfaces are the result of an approximation, or discretization process, of an underlying smooth surface. This method makes it possible both to prove theorems of convergence of discrete quantities towards continuous quantities, but also, through numerical analyses, to experimentally confirm these results. For the discretization of the operator, we face two problems: on the one hand, our surface is only an approximation of the underlying continuous surface, and on the other hand, the trivial estimation of geometric quantities on the digital surface does not generally give us a good estimate of this quantity. We already have answers to the second problem: in recent years, many articles have focused on developing methods to approximate certain geometric quantities on digital surfaces (such as normals or curvature), methods that we will describe in this thesis. These new approximation techniques allow us to inject measurement information into the elements of our surface. We therefore use the estimation of normals to answer the first problem, which in fact allows us to accurately approximate the tangent plane at a point on the surface and, through an integration method, to overcome topological problems related to the discrete surface. We present a theoretical convergence result of the discretized new operator, then we illustrate its properties using a numerical analysis of it. We carry out a detailed comparison of the new operator with those in the literature adapted on digital surfaces, which allows, at least for convergence, to show that only our operator has this property. We also illustrate the operator via some of these applications such as its spectral decomposition or the mean curvature flow

Page generated in 0.1236 seconds