Spelling suggestions: "subject:"índice"" "subject:"oíndice""
1 |
Um homomorfismo índice associado à ações livres de grupos abelianos finitosUra, Sérgio Tsuyoshi 25 February 2011 (has links)
Made available in DSpace on 2016-06-02T20:28:25Z (GMT). No. of bitstreams: 1
3472.pdf: 556467 bytes, checksum: 9a1d29831c48f69e64a4f9e93b7e8caa (MD5)
Previous issue date: 2011-02-25 / Universidade Federal de Minas Gerais / The main objective of this work is to generalize an article of Pedro Pergher, specifically the article A Zp - index homomorphism for Zp-spaces - Houston J. Math. - 31 - (2005) - N. 2 - 305-314 [7], replacing the cyclic group Zp by any finite abelian group. In his article, P. Pergher constructed an index-homomorphism associated to Zp-spaces, that is, topological spaces X equipped with free actions of the cyclic group Zp. This homomorphism has as domain the equivariant homology of X with Zp-coefficients, and Zp as target space. Our construction extends the construction of P. Pergher for arbitrary finite abelian groups G, in such a way that, similarly, our homomorphism has the equivariant homology of X with G-coefficients as domain, and G as target space. When restricted to G = Zp, our construction coincides with the Pergher index. It will be seen that our homomorphism allows achieving a Borsuk-Ulam result, concerning the existence of equivariant maps connecting two G-spaces subject to certain topological and homological conditions, when G has 2q elements with q odd. In the last chapter of the work, we detail a very recent result of Ikumitsu Nagasaki, Tomohiro Kawakami, Yasuhiro Hara and Fumihiro Ushitaki, which also proves our result of Borsuk-Ulam type above mentioned, using the Smith homology, and in such a way that all values of p are covered. / O principal objetivo deste trabalho é generalizar um artigo de Pedro Pergher, especificamente o artigo A Zp-índex homomorphism for Zp-spaces Houston J. Math. 31 (2005) N. 2 305-314 [7], trocando o grupo cíclico Zp por um abeliano finito qualquer. No artigo em questão, P. Pergher construiu um homomorfismo índice associado a Zp-espaços, ou seja, espaços topológicos X equipados com ações livres do grupo cíclico Zp. Tal homomorfismo tem como domínio a homologia equivariante de X com coeficientes em Zp, e tem valores em Zp. Nossa construção estende a construção de P. Pergher para grupos abelianos finitos arbitrários G, de tal sorte que, de maneira similar, nosso homomorfismo tem como domínio a homologia equivariante de X com coeficientes em G, e tem valores em G. Quando restrita a G = Zp, nossa construção coincide com a de P. Pergher. Será visto que tal homomorfismo possibilita a obtenção de um resultado tipo Borsuk-Ulam, concernente à existência de aplicações equivariantes conectando dois G-espaços submetidos à certas hipóteses topológicas e homológicas, quando o grupo G possui 2q elementos, com q ímpar. No último capítulo do trabalho, detalhamos um resultado muito recente de Ikumitsu Nagasaki, Tomohiro Kawakami, Yasuhiro Hara e Fumihiro Ushitaki, o qual também prova nosso resultado tipo Borsuk-Ulam acima citado, usando a homologia de Smith, e de tal sorte que todos os valores de p são cobertos.
|
2 |
Teorida de G-índice e grau de aplicações G-equivariantes / G-index theory and degree of G-equivariant mapsNeyra, Norbil Leodan Cordova 07 May 2010 (has links)
Antes da publicação do trabalho An ideal-valued cohomological index theory with applications to Borsuk-Ulam and Bourgin-Yang theorems\"de Fadell e Husseini [20], haviam sido apenas considerados índices numéricos de G-espaços, nos casos G =\'Z IND. 2\' e G um grupo finito. No entanto, tais índices numéricos são obviamente insuficientes no caso de grupos mais complexos, como por exemplo a 1-esfera \'S POT. 1\'. Neste contexto, Fadell e Husseini introduziram o chamado Indice cohomológico de valor ideal: a cada G-espaço X paracompacto, eles associaram um ideal \'Ind POT. G\' (X;K) do anel de cohomología H*(BG;K), onde a cohomologia de Cech H* é considerada com coeficientes em um corpo K e BG é o espaço classificante do grupo G. Além disso, Fadell e Husseini associaram a este ideal o Índice cohomológico de valor numérico, o qual é definido como sendo a dimensão do K-espaço vetorial obtido do quociente entre o anel H*(BG;K) e o ideal \'Ind POT. G\' (X;K). O objetivo principal deste trabalho é apresentar um estudo detalhado deste índice e utilizá-lo no estudo dos resultados sobre grau de aplicações G-equivariantes provados por Hara em \"The degree of equivariant maps\"[24] / Before the appearance of the paper An ideal-valued cohomological index theory with applications to Borsuk-Ulam and Bourgin-Yang theorems\"of Fadell and Husseini [20], had been considered numerical indices of G-spaces, when G = \'Z IND. 2\' and when G is a finite group. However, such numerical indices are obviously insufficient in the case of groups more complexes, for example, G =\'S POT 1\'. In this context Fadell andHusseini, introduced the called valued-ideal cohomological index: to every paracompact G-space X they associated an ideal \'Ind POT. G\' (X,K) of the cohomology ring H*(BG;K), where the Cech cohomology H* is considered with coefficients in a field K and BG is the classifying space of the group G. Moreover, they associated to this ideal the numerical valued cohomological index, that is, the dimension of K-vector space obtained by the quotient between the ring H*(BG;K) and the ideal \'Ind POT. G\' (X,K). The main objective of this work is to present a detailed study of this index and use such index on the study of results on degree of equivariant maps proved by Hara in his paper The degree of equivariant maps\"[24]
|
3 |
Teorida de G-índice e grau de aplicações G-equivariantes / G-index theory and degree of G-equivariant mapsNorbil Leodan Cordova Neyra 07 May 2010 (has links)
Antes da publicação do trabalho An ideal-valued cohomological index theory with applications to Borsuk-Ulam and Bourgin-Yang theorems\"de Fadell e Husseini [20], haviam sido apenas considerados índices numéricos de G-espaços, nos casos G =\'Z IND. 2\' e G um grupo finito. No entanto, tais índices numéricos são obviamente insuficientes no caso de grupos mais complexos, como por exemplo a 1-esfera \'S POT. 1\'. Neste contexto, Fadell e Husseini introduziram o chamado Indice cohomológico de valor ideal: a cada G-espaço X paracompacto, eles associaram um ideal \'Ind POT. G\' (X;K) do anel de cohomología H*(BG;K), onde a cohomologia de Cech H* é considerada com coeficientes em um corpo K e BG é o espaço classificante do grupo G. Além disso, Fadell e Husseini associaram a este ideal o Índice cohomológico de valor numérico, o qual é definido como sendo a dimensão do K-espaço vetorial obtido do quociente entre o anel H*(BG;K) e o ideal \'Ind POT. G\' (X;K). O objetivo principal deste trabalho é apresentar um estudo detalhado deste índice e utilizá-lo no estudo dos resultados sobre grau de aplicações G-equivariantes provados por Hara em \"The degree of equivariant maps\"[24] / Before the appearance of the paper An ideal-valued cohomological index theory with applications to Borsuk-Ulam and Bourgin-Yang theorems\"of Fadell and Husseini [20], had been considered numerical indices of G-spaces, when G = \'Z IND. 2\' and when G is a finite group. However, such numerical indices are obviously insufficient in the case of groups more complexes, for example, G =\'S POT 1\'. In this context Fadell andHusseini, introduced the called valued-ideal cohomological index: to every paracompact G-space X they associated an ideal \'Ind POT. G\' (X,K) of the cohomology ring H*(BG;K), where the Cech cohomology H* is considered with coefficients in a field K and BG is the classifying space of the group G. Moreover, they associated to this ideal the numerical valued cohomological index, that is, the dimension of K-vector space obtained by the quotient between the ring H*(BG;K) and the ideal \'Ind POT. G\' (X,K). The main objective of this work is to present a detailed study of this index and use such index on the study of results on degree of equivariant maps proved by Hara in his paper The degree of equivariant maps\"[24]
|
Page generated in 0.0236 seconds