• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

O anel de cohomologia do espaço de órbitas de Zp -ações livres sobre produtos de esferas / The cohomology rings of the orbit spaces of Zp-free transformation groups of the product of two spheres

Mercado, Henry José Gullo 03 June 2011 (has links)
Denotemos por X ~ p \'S POT. m\' x \'S POT. n\' um espaço finitístico com anel de cohomologia módulo p isomorfo ao anel de cohomologia de um produto de esferas \'S POT. m\' x \'S POT. n\', o qual admite ação livre do grupo cíclico G = Zp, com p um primo ímpar. Nosso objetivo neste trabalho é determinar o anel de cohomologia do espaço de órbitas X / G, usando como ferramenta principal a seqüência espectral de Leray-Serre associada à fibração de Borel X \'SETA\' \'imath\' X G \'SETA\' \'pi\' B G, onde BG é o espaço classificante do G-fibrado universal wG = (EG;BG; pG; G;G) e XG = EG x G X é o espaço de Borel. Este resultado foi provado por R. M. Dotzel, T. B. Singh and S. P. Tripathi em [14] / Let denote by X ~ p \'S POT. m\' x \'S POT. n\' finitistic space with mod p cohomology ring isomorphic to the cohomology ring of a product of spheres \'S POT. m\' x \'S POT. n\' , which admits a free action of the cyclic group G = Zp, with p an odd prime. Our goal in this work is to determine the cohomology ring of the orbit space X / G, using as main tool the Leray-Serre spectral sequence associated to the Borel fibration X \'SETA\" \'imath\' \'X G \'SETA\' \'pi\' BG, where BG is the classifying space of the G-universal bundle wG = (EG;BG; pG; G;G) and XG = EG x G X is the Borel space. This result was proved by R. M. Dotzel, T. B. Singh and S. P. Tripathi in [14]
2

O anel de cohomologia do espaço de órbitas de Zp -ações livres sobre produtos de esferas / The cohomology rings of the orbit spaces of Zp-free transformation groups of the product of two spheres

Henry José Gullo Mercado 03 June 2011 (has links)
Denotemos por X ~ p \'S POT. m\' x \'S POT. n\' um espaço finitístico com anel de cohomologia módulo p isomorfo ao anel de cohomologia de um produto de esferas \'S POT. m\' x \'S POT. n\', o qual admite ação livre do grupo cíclico G = Zp, com p um primo ímpar. Nosso objetivo neste trabalho é determinar o anel de cohomologia do espaço de órbitas X / G, usando como ferramenta principal a seqüência espectral de Leray-Serre associada à fibração de Borel X \'SETA\' \'imath\' X G \'SETA\' \'pi\' B G, onde BG é o espaço classificante do G-fibrado universal wG = (EG;BG; pG; G;G) e XG = EG x G X é o espaço de Borel. Este resultado foi provado por R. M. Dotzel, T. B. Singh and S. P. Tripathi em [14] / Let denote by X ~ p \'S POT. m\' x \'S POT. n\' finitistic space with mod p cohomology ring isomorphic to the cohomology ring of a product of spheres \'S POT. m\' x \'S POT. n\' , which admits a free action of the cyclic group G = Zp, with p an odd prime. Our goal in this work is to determine the cohomology ring of the orbit space X / G, using as main tool the Leray-Serre spectral sequence associated to the Borel fibration X \'SETA\" \'imath\' \'X G \'SETA\' \'pi\' BG, where BG is the classifying space of the G-universal bundle wG = (EG;BG; pG; G;G) and XG = EG x G X is the Borel space. This result was proved by R. M. Dotzel, T. B. Singh and S. P. Tripathi in [14]

Page generated in 0.0529 seconds