Spelling suggestions: "subject:"espaço dde órbita"" "subject:"espaço dee órbita""
1 |
Existência de ações livres e o anel de cohomologia de espaços de órbitas para variedades de Dold / Existence of free actions and the cohomology ring of orbit spaces for Dold manifoldsMorita, Ana Maria Mathias 02 March 2018 (has links)
Sejam G um grupo topológico e X um espaço topológico. Existe uma questão natural associada ao par (G; X) sobre a existência de ações livres e contínuas de G em X. Se tal ação existe, outra questão natural é o estudo de propriedades do espaço de órbitas X / G e, nesse contexto, temos o problema usualmente difícil de se calcular o anel de cohomologia de X / G. Este trabalho é dedicado a essas questões quando X são variedades de Dold P(m;n) especiais e G = Z2. A variedade fechada e suave P(m;n), de dimensão m+2n, é o espaço de órbitas da involução livre T : Sm × CPn → Sm × CPn (x; [z]) → (-x; [ z̄ ]) e foi introduzida por Albrecht Dold em 1956, sendo bastante estudada na literatura e desempenhando papel fundamental na teoria de cobordismo. A principal ferramenta utilizada nesse estudo foi a sequência espectral de Leray-Serre associada à fibração de Borel X → XG → BG; onde XG = (X × EG) / G é a construção de Borel associada ao G-fibrado universal EG → BG. / Let G be a topological group and X be a topological space. There is a natural question associated with the pair (G; X) about the existence of a continuous free action of G on X. If such an action exists, other natural question is the study of properties of the orbit space X / G and, in this setting, the study of the cohomology ring of X / G. This thesis is devoted to these questions when X are special Dold manifolds P(m;n) and G = Z2. The closed smooth (m+2n)-dimensional manifold, P(m;n), is the orbit space of the free involution T : Sm × CPn → Sm × CPn (x; [z]) → (-x; [ z̄ ]) and was introduced by Albrecht Dold in 1956, being well studied in literature and playing a fundamental role in cobordism theory. The main tool used in this study was the Leray-Serre spectral sequence associated with the Borel fibration X → XG → BG; where XG = (X × EG) / G is the Borel construction associated with the universal G-bundle EG → BG.
|
2 |
Existência de ações livres e o anel de cohomologia de espaços de órbitas para variedades de Dold / Existence of free actions and the cohomology ring of orbit spaces for Dold manifoldsAna Maria Mathias Morita 02 March 2018 (has links)
Sejam G um grupo topológico e X um espaço topológico. Existe uma questão natural associada ao par (G; X) sobre a existência de ações livres e contínuas de G em X. Se tal ação existe, outra questão natural é o estudo de propriedades do espaço de órbitas X / G e, nesse contexto, temos o problema usualmente difícil de se calcular o anel de cohomologia de X / G. Este trabalho é dedicado a essas questões quando X são variedades de Dold P(m;n) especiais e G = Z2. A variedade fechada e suave P(m;n), de dimensão m+2n, é o espaço de órbitas da involução livre T : Sm × CPn → Sm × CPn (x; [z]) → (-x; [ z̄ ]) e foi introduzida por Albrecht Dold em 1956, sendo bastante estudada na literatura e desempenhando papel fundamental na teoria de cobordismo. A principal ferramenta utilizada nesse estudo foi a sequência espectral de Leray-Serre associada à fibração de Borel X → XG → BG; onde XG = (X × EG) / G é a construção de Borel associada ao G-fibrado universal EG → BG. / Let G be a topological group and X be a topological space. There is a natural question associated with the pair (G; X) about the existence of a continuous free action of G on X. If such an action exists, other natural question is the study of properties of the orbit space X / G and, in this setting, the study of the cohomology ring of X / G. This thesis is devoted to these questions when X are special Dold manifolds P(m;n) and G = Z2. The closed smooth (m+2n)-dimensional manifold, P(m;n), is the orbit space of the free involution T : Sm × CPn → Sm × CPn (x; [z]) → (-x; [ z̄ ]) and was introduced by Albrecht Dold in 1956, being well studied in literature and playing a fundamental role in cobordism theory. The main tool used in this study was the Leray-Serre spectral sequence associated with the Borel fibration X → XG → BG; where XG = (X × EG) / G is the Borel construction associated with the universal G-bundle EG → BG.
|
3 |
O anel de cohomologia do espaço de órbitas de Zp -ações livres sobre produtos de esferas / The cohomology rings of the orbit spaces of Zp-free transformation groups of the product of two spheresMercado, Henry José Gullo 03 June 2011 (has links)
Denotemos por X ~ p \'S POT. m\' x \'S POT. n\' um espaço finitístico com anel de cohomologia módulo p isomorfo ao anel de cohomologia de um produto de esferas \'S POT. m\' x \'S POT. n\', o qual admite ação livre do grupo cíclico G = Zp, com p um primo ímpar. Nosso objetivo neste trabalho é determinar o anel de cohomologia do espaço de órbitas X / G, usando como ferramenta principal a seqüência espectral de Leray-Serre associada à fibração de Borel X \'SETA\' \'imath\' X G \'SETA\' \'pi\' B G, onde BG é o espaço classificante do G-fibrado universal wG = (EG;BG; pG; G;G) e XG = EG x G X é o espaço de Borel. Este resultado foi provado por R. M. Dotzel, T. B. Singh and S. P. Tripathi em [14] / Let denote by X ~ p \'S POT. m\' x \'S POT. n\' finitistic space with mod p cohomology ring isomorphic to the cohomology ring of a product of spheres \'S POT. m\' x \'S POT. n\' , which admits a free action of the cyclic group G = Zp, with p an odd prime. Our goal in this work is to determine the cohomology ring of the orbit space X / G, using as main tool the Leray-Serre spectral sequence associated to the Borel fibration X \'SETA\" \'imath\' \'X G \'SETA\' \'pi\' BG, where BG is the classifying space of the G-universal bundle wG = (EG;BG; pG; G;G) and XG = EG x G X is the Borel space. This result was proved by R. M. Dotzel, T. B. Singh and S. P. Tripathi in [14]
|
4 |
O anel de cohomologia do espaço de órbitas de Zp -ações livres sobre produtos de esferas / The cohomology rings of the orbit spaces of Zp-free transformation groups of the product of two spheresHenry José Gullo Mercado 03 June 2011 (has links)
Denotemos por X ~ p \'S POT. m\' x \'S POT. n\' um espaço finitístico com anel de cohomologia módulo p isomorfo ao anel de cohomologia de um produto de esferas \'S POT. m\' x \'S POT. n\', o qual admite ação livre do grupo cíclico G = Zp, com p um primo ímpar. Nosso objetivo neste trabalho é determinar o anel de cohomologia do espaço de órbitas X / G, usando como ferramenta principal a seqüência espectral de Leray-Serre associada à fibração de Borel X \'SETA\' \'imath\' X G \'SETA\' \'pi\' B G, onde BG é o espaço classificante do G-fibrado universal wG = (EG;BG; pG; G;G) e XG = EG x G X é o espaço de Borel. Este resultado foi provado por R. M. Dotzel, T. B. Singh and S. P. Tripathi em [14] / Let denote by X ~ p \'S POT. m\' x \'S POT. n\' finitistic space with mod p cohomology ring isomorphic to the cohomology ring of a product of spheres \'S POT. m\' x \'S POT. n\' , which admits a free action of the cyclic group G = Zp, with p an odd prime. Our goal in this work is to determine the cohomology ring of the orbit space X / G, using as main tool the Leray-Serre spectral sequence associated to the Borel fibration X \'SETA\" \'imath\' \'X G \'SETA\' \'pi\' BG, where BG is the classifying space of the G-universal bundle wG = (EG;BG; pG; G;G) and XG = EG x G X is the Borel space. This result was proved by R. M. Dotzel, T. B. Singh and S. P. Tripathi in [14]
|
Page generated in 0.0548 seconds