• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 1
  • Tagged with
  • 14
  • 14
  • 8
  • 7
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Temperature Sensitive Mutation in Cactin Causes a G1 Phase Arrest in Toxoplasma gondii

Szatanek, Tomasz Artur January 2010 (has links)
Thesis advisor: Marc Jan Gubbels / Thesis advisor: Thomas Chiles / The length of the tachyzoite cell cycle, in particular G1, is an important virulence factor in Toxoplasma gondii. Cdk and Cyclin activities ultimately control the cell cycle; however, the checkpoint control mechanisms diverge from higher eukaryotes and are poorly understood. In order to elucidate these mechanisms, temperature sensitive (ts) mutants were generated by chemical mutagenesis. One of these mutants, called FV-P6, dies within one cell cycle in the G1 phase upon transfer from the permissive (35°C) to the restrictive temperature (40°C). Cosmid complementation identified the gene responsible for this G1 arrest as a `Cactin' ortholog. A single point mutation in this gene that resulted in an amino acid substitution from Tyrosine to Histidine at position 661 in the highly conserved C-terminus was shown to underlay the temperature sensitive effect. Cactin is highly conserved across eukaryotes and plays a role in embryonic development of metazoa although its mechanism of action is poorly understood. In agreement with the predicted nuclear localization signal in the N-terminus, expression of a fluorescent reporter gene fusion resulted in nuclear localization. Genome-wide expression profiling analysis of mutant and wild type at the permissive and restrictive temperatures confirmed the G1 arrest and furthermore demonstrated up-regulation of bradyzoite and Toxoplasma cat life cycle stage genes, hinting at TgCactin's role as a repressor. Since DNA binding domains or enzymatic domains are absent in TgCactin, TgCactin must act in a complex. Native blue gel electrophoresis demonstrated that TgCactin is present in large complexes of 720 and 800 kDa. A yeast two-hybrid screen (YTH) identified 40 potential TgCactin-interacting proteins of which 10 were selected for further validation. Eight out of these ten candidates are involved in DNA/RNA processes pertaining to transcription and translation, respectively. One-on-one YTH interactions between mutated and N-terminal deletion mutants of TgCactin and the above 10 interactors were abolished except for a single RNA helicase. Studies in Toxoplasma of four of these interactors demonstrated that only the RNA helicase localized to the nucleus; however, co-immunoprecipitation experiments to demonstrate that this protein is present in a complex with TgCactin were inconclusive. Furthermore, TgCactin self interactions identified domains necessary for TgCactin-TgCactin binding. Taken together, these findings indicate that TgCactin likely functions as a repressor of gene expression, possibly through an epigenetic mechanism reminiscent of an RNA/DNA helicase- based system in plants. / Thesis (PhD) — Boston College, 2010. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Biology.
2

Single cell analysis of checkpoints in G₁ /

Martinsson, Hanna-Stina, January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2005. / Härtill 4 uppsatser.
3

Regulation of the G1 to S-phase transition in S. cerevisiae by CDC4 /

Jensen, Bryan, January 1997 (has links)
Thesis (Ph. D.)--University of Washington, 1997. / Vita. Includes bibliographical references (leaves [67]-73).
4

The brevity of G1 is an intrinsic determinant of naïve pluripotency / La brièveté de la phase G1 est une caractéristique fondamentale de l’état naïf de pluripotence

Coronado, Diana 19 December 2011 (has links)
Les cellules souches embryonnaires (cellules ES) sont capables de se multiplier de façon autonome en l’absence de facteurs de croissance et de cytokines, un état appelé “état fondamental de pluripotence”. Le cycle cellulaire des cellules ES se caractérise : (i) par une expression élevée et uniforme de la cycline E et des complexes Cycline E-CDK2 au cours de la progression dans le cycle cellulaire et (ii) par une phase G1 très courte (1 heure) dont la traversée ne dépend ni des MAPK ni des points de contrôles régulés par la protéine du rétinoblastome (RB) et p53. Ces observations soulèvent la question de l’existence d’un lien de cause à effet entre ce phénomène de réplication autonome et la pluripotence. Mon projet de thèse se construit autour de trois axes qui montrent que : 1/ la phase G1 des cellules ES de souris est une phase de sensibilité accrue aux inducteurs de différenciation. 2/ la balance entre autorenouvellement et différenciation est perturbée, (i) quand l’expression de la cycline E est altérée, ou (ii) quand l’association de la cycline E avec la kinase CDK2 et le centrosome est bloquée. 3/ La signalisation par le LIF contrôle la formation et l’activation des complexes Cycline E/CDK2. Dans les cellules ES naïves Rex1+, l’allongement de la durée de la phase G1 induit par la privation de LIF précède, ou est concomitante, à la diminution de l’expression de marqueurs de pluripotence et à l’activation des marqueurs les plus précoces de la différenciation. Finalement, nous proposons un modèle dans lequel la signalisation par le LIF régule la transition G1/S et permet le maintien de l’autorenouvellement des cellules ES murines / Pluripotency can be captured and propagated in vitro from the epiblast of the pre-implantation blastocysts in the form of embryonic stem cells (ESCs). ESCs are capable of unlimited proliferation in an undifferentiated state while maintain the potential to differentiate into cells of all three germ layers in the embryo, including the germline. Two key features the ES cell mitotic cycle are (i) a vastly elevated and uniform expression of Cyclin E and Cyclin E/CDK2 complexes throughout the cell cycle and (ii) a short G1 phase characterized by the lack of RB- and p53-dependent checkpoints, and reduced dependency on MAPK signalling. During my PhD project, we explored whether and how the regulation of the cell cycle actively sustains self-renewal of mouse ESCs (mESCs). We demonstrated that: 1/ the G1 phase of mESCs is a phase of increased susceptibility to differentiation inducers. Thus shortening of G1 might shield undifferentiated cells from differentiation inducers and help ESCs to self-renew in the pluripotent state. 2/ Cyclin E opposes differentiation and supports self-renewal of mESCs by two independent mechanisms, one of which being independent of CDK2 activation. 3/ LIF signalling regulates Cyclin E/CDK2 kinase activity therefore accelerating the G1 to S phase transition. Finally, we propose a model in which LIF signalling stimulates the G1 to S phase transition to shield mESCs from undesired differentiation signals and help them to self-renew in the pluripotent state
5

Cell cycle control by components of cell anchorage /

Gad, Annica, January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2005. / Härtill 4 uppsatser.
6

G1-phase cyclin expression in neoplastic B cells /

Scuderi, Richard, January 2002 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2002. / Härtill 4 uppsatser.
7

The role of cyclin E in cell cycle regulation and genomic instability /

Ekholm-Reed, Susanna, January 2004 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2004. / Härtill 3 uppsatser.
8

The brevity of G1 is an intrinsic determinant of naïve pluripotency

Coronado, Diana 19 December 2011 (has links) (PDF)
Pluripotency can be captured and propagated in vitro from the epiblast of the pre-implantation blastocysts in the form of embryonic stem cells (ESCs). ESCs are capable of unlimited proliferation in an undifferentiated state while maintain the potential to differentiate into cells of all three germ layers in the embryo, including the germline. Two key features the ES cell mitotic cycle are (i) a vastly elevated and uniform expression of Cyclin E and Cyclin E/CDK2 complexes throughout the cell cycle and (ii) a short G1 phase characterized by the lack of RB- and p53-dependent checkpoints, and reduced dependency on MAPK signalling. During my PhD project, we explored whether and how the regulation of the cell cycle actively sustains self-renewal of mouse ESCs (mESCs). We demonstrated that: 1/ the G1 phase of mESCs is a phase of increased susceptibility to differentiation inducers. Thus shortening of G1 might shield undifferentiated cells from differentiation inducers and help ESCs to self-renew in the pluripotent state. 2/ Cyclin E opposes differentiation and supports self-renewal of mESCs by two independent mechanisms, one of which being independent of CDK2 activation. 3/ LIF signalling regulates Cyclin E/CDK2 kinase activity therefore accelerating the G1 to S phase transition. Finally, we propose a model in which LIF signalling stimulates the G1 to S phase transition to shield mESCs from undesired differentiation signals and help them to self-renew in the pluripotent state
9

Protein phosphatase 6

Stefansson, Bjarki. January 2007 (has links)
Thesis (Ph. D.)--University of Virginia, 2007. / Title from title page. Includes bibliographical references. Also available online through Digital Dissertations.
10

Investigation of Multiple Concerted Mechanisms Underlying Stimulus-induced G1 Arrest in Yeast: A Dissertation

Pope, Patricia A. 03 June 2013 (has links)
Progression through the cell cycle is tightly controlled, and the decision whether or not to enter a new cell cycle can be influenced by both internal and external cues. For budding yeast one such external cue is pheromone treatment, which can induce G1 arrest. Two distinct mechanisms are known to be involved in this arrest, one dependent on the arrest protein Far1 and one independent of Far1, but the exact mechanisms have remained enigmatic. The studies presented here further elucidate both of these mechanisms. We looked at two distinct aspects of the Far1-independent arrest mechanism. First, we studied the role of the G1/S regulatory system in G1 arrest. We found that deletion of the G1/S transcriptional repressors Whi5 and Stb1 compromises Far1-independent arrest, but only partially, and that this partial arrest failure correlates to partial de-repression of G1/S transcripts. Deletion of the CKI Sic1, however, is more strongly required for arrest in the absence of Far1, though not when Far1 is present. Together, this demonstrates that functionally overlapping regulatory circuits controlling the G1/S transition collectively provide robustness to the G1 arrest response. We also sought to reexamine the phenomenon of pheromone-induced loss of G1/S cyclin proteins, which we suspected could be another Far1-independent arrest mechanism. We confirmed that pheromone treatment has an effect on G1 cyclin protein levels independent of transcriptional control. Our findings suggest that this phenomenon is dependent on SCFGrr1but is at least partly independent of Cdc28 activity, the CDK phosphorylation sites in Cln2, and Far1. We were not, however, able to obtain evidence that pheromone increases the degradation rate of Cln1/2, which raises the possibility that pheromone reduces their synthesis rate instead. Finally, we also studied the function of Far1 during pheromone-induced G1 arrest. Although it has been assumed that Far1 acts as a G1/S cyclin specific CDK inhibitor, there has been no conclusive evidence that this is the case. Our data, however, suggests that at least part of Far1’s function may actually be to interfere with Cln-CDK/substrate interactions since we saw a significant decrease of co-pulldown of Cln2 and substrates after treatment with pheromone. All together, the results presented here demonstrate that there are numerous independent mechanisms in place to help robustly arrest cells in G1.

Page generated in 0.046 seconds