Spelling suggestions: "subject:"anergic synapses"" "subject:"crfergic synapses""
1 |
A Novel Function of Giant Ankyrin-G in Promoting the Formation of Somatodendritic GABAA Receptor SynaptogenesisTseng, Wei Chou January 2014 (has links)
<p>The formation and retention of distinct membrane domains in the fluidic membrane bilayer is the key process in establishing spatial organization for mediating physiological functions in metazoans. The spectrin-ankyrin network organizes diverse membrane domains including T-tubule and intercalated disc of cardiomyocytes, basolateral membrane of epithelial cells, costameres of striatal muscle, and axon initial segments and nodes of Ranvier in nervous system. This thesis identifies a novel function of 480 kDa ankyrin-G, an alternatively spliced isoform of the ankyrin family, in promoting somatodendritic GABAA receptor synaptogenesis both in vitro and in vivo. In the nervous system, an insertion of a neuronal specific exon (exon 37) occurs in ankyrin-G polypeptide which results in a 480 kDa isoform. 480 kDa ankyrin-G (giant ankyrin-G) has been shown to coordinate formation and maintenance of the axon initial segment (AIS) and nodes of Ranvier. This thesis research began with the discovery that giant ankyrin-G, previously thought to be confined to the axon initial segment, forms developmentally-regulated and cell-type specific somatodendritic "outposts" on the plasma membrane of pyramidal neurons. This somatodendritic 480 kDa ankyrin-G outpost forms micron-scale membrane domains where it associates with canonical AIS binding partners including voltage-gated sodium channel and neurofascin. This thesis further discovered that the giant insert of 480 kDa ankyrin-G interacts with GABARAP, a GABAA receptor-associated protein. Both the interaction with GABARAP and the membrane association through palmitoylation of giant ankyrin-G are required for the formation of somatodendritic GABAergic synapses. This work further found that ankyrin-G associates with extrasynaptic GABAA receptors and stabilizes receptors on the extrasynaptic membrane through opposing endocytosis. This story demonstrates for the first time the existence of giant ankyrin-G somatodendritic outpost as well as its function in directing the formation of GABAergic synapses that provides a rationale for studies linking ankyrin-G genetic variation with psychiatric disease and neurodevelopmental disorders.</p><p>Additional work presented in the Appendix characterized novel ankyrin-G full length transcripts in the heart and kidney with unique domain compositions though alternative splicing. The preliminary work further identified biochemical properties and potential role of an insert C in the C-terminus of ankyrin-G in mediating cytokinesis and cellular migration in mouse fibroblasts. Together, this thesis work expands the knowledge of giant ankyrin-G functions in the nervous system and offers insights into the diversified roles of distinct ankyrin-G peptides acquired from alternative splicing in organizing specific membrane domains and interacting with defined intracellular pathways in different tissues.</p> / Dissertation
|
2 |
Contribuição de diferentes sinapses do hipotálamo paraventricular para o controle da função cardíaca / Role of paraventricular hypothalamus in the control of cardiac functionMendonça, Michelle Mendanha 25 July 2017 (has links)
Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2018-08-16T17:44:08Z
No. of bitstreams: 2
Dissertação - Michelle Mendanha Mendonça - 2017.pdf: 20722346 bytes, checksum: 2ee7a850badae565954ebdb18346c83d (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-08-17T11:31:06Z (GMT) No. of bitstreams: 2
Dissertação - Michelle Mendanha Mendonça - 2017.pdf: 20722346 bytes, checksum: 2ee7a850badae565954ebdb18346c83d (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-08-17T11:31:06Z (GMT). No. of bitstreams: 2
Dissertação - Michelle Mendanha Mendonça - 2017.pdf: 20722346 bytes, checksum: 2ee7a850badae565954ebdb18346c83d (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2017-07-25 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / Within the hypothalamic areas involved in the control of cardiovascular function,
neurons of the paraventricular hypothalamus play a key role, either by projecting to the
sympathetic premotor neurons of rostroventrolateral medulla (RVLM) or by reaching
preganglionic neurons of the spinal intermediolateral column (IML). Despite describing the
role of PVH in the cardiovascular control, literature lacks of data on the PVH contribution
to the control of cardiac function. In this regard, the aim of the present study was to assess whether gabaergic and adrenergic synapses, known for being active at the PVH, are
involved in the control of cardiac function by its neurons in normotensive anesthetized
animals. Experiments were performed in adult male Wistar rats (250-350g) that were
anesthetized with urethane (1.2-1.4 g/kg i.p.) and underwent catheterization of femoral to
record arterial pressure and heart rate. Femoral vein was used to inject the vasoactive
drugs phenylephrine (10μg/kg) the sodium nitroprussiate (10μg/kg), the blocker of cardiac
pacemaker zatebradine (1mg/kg) and to supplement anesthesia. The cardiac left ventricle
was catheterized to record the left ventricular pressure and its derivative. Craniotomy
allowed for injections into the PVH of: muscimol (20mM – 100nL), bicuculline (0,4mM -
100nL), propranolol (10mM – 100nL), isoproterenol (100μM – 100nL), fentolamine (13mM
– 100nL), phenylephrine (30nM – 100nL). The main results were: i) inhibition of PVH by
injecting GABAA agonist muscimol, reduced arterial pressure and cardiac inotropy; ii)
disihibition of PVH neurons by injecting bicuculline evoked positive chronotropy and
inotropy; iii) Alfa adrenergic receptors control cardiac function; iv) Beta adrenergic
receptors of PVH do not influence cardiac function; v) afterload seems to poorly contribute
to the PVH-evoked inotropy. Jointly, our results suggest that PVH provides substantial
contribution to the tonic control of cardiac function. We conclude that the PVH participates
in the control of cardiac function. Changes in the activity of these neurons by gabaergic
and adrenergic influences may set autonomic control of cardiac function, thus resulting in
contractile and heartbeat responses. Deepen the knowledge on the mechanisms
underlying the control of central areas and its influence on the cardiovascular system may
feed the understanding of cardiovascular pathophysiology. / Dentre as áreas hipotalâmicas envolvidas no controle da função
cardiovascular, os neurônios do hipotálamo paraventicular (PVH) desempenham um
papel fundamental no controle da função cardíaca por meio de suas projeções para
neurônios pré-motores simpáticos do bulbo rostroventrolateral (RVLM) pelas
projeções diretas que alcançam os neurônios pré-ganglionares da coluna
intermediolateral espinhal (IML). Contudo, não há dados na literatura sobre sua
contribuição para o controle da função cardíaca em animais normotensos e
anestesiados. Sendo assim, o objetivo do presente estudo foi avaliar se as sinapses
gabaérgicas e adrenérgicas, presentes no PVH, estão envolvidas no controle da
função cardíaca por esses neurônios. Os experimentos foram realizados em ratos
Wistar machos (250-350g), que foram anestesiados com uretana (1,2 a 1,4 g / kg i.p.)
e tiveram sua artéria femoral canulada para registrar pressão arterial e frequência
cardíaca. A veia femoral foi utilizada para injeções de fármacos vasoativos fenilefrina
(10μg/kg) e nitroprussitato de sódio (10μg/kg), do bloqueador do marcapasso
cardíaco zatebradina (1mg/kg) e para suplementação de anestesia. O ventrículo
esquerdo cardíaco foi cateterizado para medir a pressão ventricular esquerda e sua
derivativa. A craniotomia foi realizada para permitir injeções no PVH de: muscimol
(20mM – 100nL), bicucullina (0,4mM - 100nL), propranolol (10mM – 100nL),
isoproterenol (100μM – 100nL), fentolamina (13mM – 100nL), fenilefrina (30nM –
100nL). Os principais achados deste estudo são: i) A inibição dos neurônios do PVH
pela injeção do agonista GABAA muscimol reduziu a pressão arterial e o inotropismo
cardíaco; ii) A desinibição dos neurônios do PVH pela injeção de bicuculina provocou
respostas cronotrópicas e inotrópicas positivas; iii) Os receptores α-adrenérgicos
contribuem para o cronotropismo e inotropismo cardíacos; iv) Os receptores β-
adrenérgicos do PVH não influenciam o controle da função cardíaca; v) A pós-carga
exerceu pouca influência nas respostas inotrópicas controladas pelo PVH. Em
conjunto, os resultados sugerem que o PVH contribui de forma relevante para o
controle tônico da função cardíaca em animais normotensos e anestesiados. Assim
conclui-se que o PVH participa do controle da função cardíaca.
|
3 |
Mécanismes cellulaires et moléculaires impliqués dans le développement des synapses GABAergiques périsomatiques et dans la plasticité corticale : rôle de l’activité neuronale et de proBDNF/p75NTRBaho, Elie 06 1900 (has links)
Dans le cortex visuel des mammifères, une cellule à panier (BC) qui représente un sous-type majoritaire d’interneurones GABAergiques, innerve une centaine de neurones par une multitude de synapses localisées sur le soma et sur les dendrites proximales de chacune de ses cibles. De plus, ces cellules sont importantes pour la génération des rythmes gammas, qui régulent de nombreuses fonctions cognitives, et pour la régulation de la plasticité corticale. Bien que la fonction des BC au sein des réseaux corticaux est à l'étude, les mécanismes qui contrôlent le développement de leur arborisation complexe ainsi que de leurs nombreux contacts synaptiques n’ont pas été entièrement déterminés.
En utilisant les récepteurs allatostatines couplés aux protéines G de la drosophile (AlstR), nous démontrons in vitro que la réduction de l'excitation ainsi que la réduction de la libération des neurotransmetteurs par les BCs corticales individuelles des souris, diminuent le nombre de cellules innervées sans modifier le patron d'innervation périsomatique, durant et après la phase de prolifération des synapses périsomatiques. Inversement, lors de la suppression complète de la libération des neurotransmetteurs par les BCs individuelles avec l’utilisation de la chaîne légère de la toxine tétanus, nous observons des effets contraires selon le stade de développement. Les BCs exprimant TeNT-Lc pendant la phase de prolifération sont caractérisées par des arborisations axonales plus denses et un nombre accru de petits boutons homogènes autour des somas innervés. Toutefois, les cellules transfectées avec TeNT-Lc après la phase de la prolifération forment une innervation périsomatique avec moins de branchements terminaux d’axones et un nombre réduit de boutons avec une taille irrégulière autour des somas innervés. Nos résultats révèlent le rôle spécifique des niveaux de l’activité neuronale et de la neurotransmission dans l'établissement du territoire synaptique des cellules GABAergiques corticaux.
Le facteur neurotrophique dérivé du cerveau (BDNF) est un modulateur puissant de la maturation activité-dépendante des synapses GABAergiques. Grâce à l'activation et à la signalisation de son récepteur tyrosine kinase B (TrkB), la liaison de mBDNF module fortement la prolifération des synapses périsomatiques GABAergiques formés par les BCs. Par contre, le rôle du récepteur neurotrophique de faible affinité, p75NTR, dans le développement du territoire synaptique des cellules reste encore inconnu. Dans ce projet, nous démontrons que la suppression de p75NTR au niveau des BCs individuelles in vitro provenant de souris p75NTRlox induit la formation d'une innervation périsomatique exubérante. BDNF est synthétisé sous une forme précurseur, proBDNF, qui est par la suite clivée par des enzymes, y compris la plasmine activée par tPA, pour produire une forme mature de BDNF (m)BDNF. mBDNF et proBDNF se lient avec une forte affinité à TrkB et p75NTR, respectivement. Nos résultats démontrent qu’un traitement des cultures organotypiques avec la forme résistante au clivage de proBDNF (mut-proBDNF) réduit fortement le territoire synaptique des BCs. Les cultures traitées avec le peptide PPACK, qui inactive tPA, ou avec tPA altèrent et favorisent respectivement la maturation de l’innervation synaptique des BCs. Nous démontrons aussi que l’innervation exubérante formée par les BCs p75NTR-/- n’est pas affectée par un traitement avec mut-proBDNF. L’ensemble de ces résultats suggère que l'activation de p75NTR via proBDNF régule négativement le territoire synaptique des BCs corticaux.
Nous avons ensuite examiné si mut-proBDNF affecte l’innervation périsomatique formée par les BCs in vivo, chez la souris adulte. Nous avons constaté que les boutons GABAergiques périsomatiques sont significativement diminués dans le cortex infusé avec mut-proBDNF par rapport à l’hémisphère non-infusé ou traité avec de la saline. En outre, la plasticité de la dominance oculaire (OD) est rétablie par ce traitement chez la souris adulte. Enfin, en utilisant des souris qui ne possèdent pas le récepteur p75NTR dans leurs BCs spécifiquement, nous avons démontré que l'activation de p75NTR via proBDNF est nécessaire pour induire la plasticité de la OD chez les souris adultes. L’ensemble de ces résultats démontre un rôle critique de l'activation de p75NTR dans la régulation et le maintien de la connectivité des circuits GABAergiques, qui commencent lors du développement postnatal précoce jusqu’à l'âge adulte. De plus, nous suggérons que l'activation contrôlée de p75NTR pourrait être un outil utile pour restaurer la plasticité dans le cortex adulte. / Cortical GABAergic basket cells (BC) innervate hundreds of postsynaptic targets with synapses clustered around the soma and proximal dendrites. They are important for gamma oscillation generation, which in turn regulate many cognitive functions, and for the regulation of developmental cortical plasticity. Although the function of BC within cortical networks is being explored, the mechanisms that control the development of their extensive arborisation and synaptic contacts have not been entirely resolved.
By using the Drosophila allatostatin G-protein-coupled receptors (AlstR), we show that reducing excitation, and thus neurotransmitter release, in mouse cortical single BC in slice cultures decreases the number of innervated cells without changing the pattern of perisomatic innervation, both at the peak and after the proliferation phase of perisomatic synapse formation. Conversely, suppressing neurotransmitter release in single BCs by using the tetanus toxin light-chain can have completely opposite effects depending on the developmental stage. Basket cells expressing TeNT-Lc during the peak of the proliferation were characterized by denser axonal arbors and an increased number of smaller, homogenous boutons around the innervated somatas compared with control cells. However, after the peak of the synapse proliferation, TeNT-Lc transfected BCs formed perisomatic innervation with fewer terminal axon branches and fewer irregular-sized boutons around innervated somatas. Our results reveal a remarkably specific and age-dependent role of neural activity and neurotransmission levels in the establishment of the synaptic territory of cortical GABAergic cells.
Brain derived neurotrophic factor (BDNF) has been shown to be a strong modulator of activity-dependent-maturation of GABAergic synapses. Through the activation and signaling of their receptor Tropomyosin-related kinase B (TrkB), mBDNF binding strongly modulates the proliferation of GABAergic perisomatic synapses formed by BCs. Whether the low-affinity neurotrophin-receptor p75NTR also play a role in the development of basket cell synaptic territory is unknown. Here, we show that single-cell deletion of p75NTR in BCs in cortical organotypic cultures from p75NTRlox mice induce the formation of exuberant perisomatic innervations by the mutant basket cells, in a cell-autonomous fashion. BDNF is synthesized as a precursor, proBDNF, which is cleaved by enzymes, including tPA-activated plasmin, to produce mature (m)BDNF. mBDNF and proBDNF bind with high-affinity to TrkB and p75NTR, respectively. Our results show that treating organotypic cultures with cleavage-resistant proBDNF (mut-proBDNF) strongly reduces the synaptic territory of BCs. Treating cultures with the tPA-inactivating peptide PPACK or with tPA impairs and promotes the maturation of BC synaptic innervations, respectively. We further show that the exuberant innervations formed by p75NTR-/- basket cells are not affected by mut-proBDNF treatment. All together, these results suggest that proBDNF-mediated p75NTR activation negatively regulates the synaptic territory of BCs.
We next examined if mut-proBDNF affects perisomatic innervation formed by BCs in vivo, in the adult mouse. We found that perisomatic GABAergic boutons are significantly decreased in the cortex infused with mut-proBDNF as compared to non-infused or saline-treated hemispheres. Further, ocular dominance (OD) plasticity is restored by this treatment in adult mice. Finally, we found that proBDNF-mediated activation of p75NTR is necessary to induce OD plasticity in the adult mice, by using mice that lack p75NTR specifically in BCs. All together, these results demonstrate a critical role of p75NTR activation in regulating and maintaining GABAeric circuit connectivity from early postnatal development to adulthood. Further, we suggest that controlled activation of p75NTR could be a useful tool to restore plasticity in adult cortex.
|
Page generated in 0.0294 seconds