• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthetic Image Generation Using GANs : Generating Class Specific Images of Bacterial Growth / Syntetisk bildgenerering med GANs

Mattila, Marianne January 2021 (has links)
Mastitis is the most common disease affecting Swedish milk cows. Automatic image classification can be useful for quickly classifying the bacteria causing this inflammation, in turn making it possible to start treatment more quickly. However, training an automatic classifier relies on the availability of data. Data collection can be a slow process, and GANs are a promising way to generate synthetic data to add plausible samples to an existing data set. The purpose of this thesis is to explore the usefulness of GANs for generating images of bacteria. This was done through researching existing literature on the subject, implementing a GAN, and evaluating the generated images. A cGAN capable of generating class-specific bacteria was implemented and improvements upon it made. The images generated by the cGAN were evaluated using visual examination, rapid scene categorization, and an expert interview regarding the generated images. While the cGAN was able to replicate certain features in the real images, it fails in crucial aspects such as symmetry and detail. It is possible that other GAN variants may be better suited to the task. Lastly, the results highlight the challenges of evaluating GANs with current evaluation methods.
2

Navigating the Metric Zoo: Towards a More Coherent Model For Quantitative Evaluation of Generative ML Models

Dozier, Robbie 26 August 2022 (has links)
No description available.

Page generated in 0.0839 seconds