• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 232
  • 89
  • 44
  • 22
  • 20
  • 7
  • 5
  • 1
  • 1
  • Tagged with
  • 557
  • 557
  • 132
  • 95
  • 91
  • 88
  • 85
  • 75
  • 69
  • 59
  • 52
  • 50
  • 47
  • 43
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Modeling cooperative gene regulation using Fast Orthogonal Search

Minz, Ian 22 August 2008 (has links)
A number of computational methods have suggested means by which gene transcription – the process through which RNA is created from DNA – is activated, but there are factors at work that no model has been able to fully explain. In eukaryotes, gene regulation is quite complex, so models have primarily focused on a relatively simple species, Saccharomyces cerevisiae (budding yeast). Because of the inherent complexity in higher species, and even in yeast, a method of identifying transcription factor (TF) binding motifs (specific, short DNA sequences) must be efficient and thorough in its analysis. This thesis shows that a method using the Fast Orthogonal Search (FOS) algorithm to uncover binding motifs as well as cooperatively binding groups of motifs can explain variations in gene expression profiles, which reflect the level at which DNA is transcribed into RNA for a number of genes. The algorithm is very fast, exploring a motif list and constructing a final model within seconds to a few minutes. It produces model terms that are consistent with known motifs, while also revealing new motifs and interactions, and it causes impressive reductions in variance with relatively few model terms over the cell-cycle. / Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2008-08-21 10:30:24.293
62

SCREENING AND CHARACTERIZATION OF ARABIDOPSIS THALIANA MUTANTS WITH ALTERED CAROTENOID PROFILE

2014 June 1900 (has links)
Carotenoids are organic pigments that are mainly found in the chloroplasts and chromoplasts of plants and other photosynthetic organisms. Carotenoid molecules containing oxygen, such as lutein, violaxanthin and zeaxanthin are called xanthophylls and the rest containing un-oxygenated carotenoids are known as carotenes. Carotenoids form the integral part of the photosystem II LHC. Xanthophylls mainly aid in light harvesting and dissipation of harmful excess energy from excited chlorophyll molecules, thereby protecting chlorophyll from photo-degradation. The biosynthesis of carotenoids has been widely studied using plant and algae. However, the regulatory mechanisms involved in carotenoid metabolism need better understanding. This thesis identified novel regulatory mechanisms involved in the carotenoid biosynthetic pathway using activation-tagged Arabidopsis mutants. Two screening methods, red seed coat screening and norflurazon resistance screening, were used in this study. Fourteen mutants were screened using red seed coat screening but a successful mutant characterization could not be performed due to the unavailability of mutants with a single copy T-DNA insertion. Norflurazon screening identified eight mutants, out of which two mutants, KN203 and KN231, were characterized. The KN203 mutant had a defective keto-acyl CoA synthase 19 gene. KN203 mutant had lower carotenoid levels in the leaves and increased carotenoid levels in the mature seeds; the mutant was able to revert back to wild type phenotype after complementation of a functional KCS19 gene copy driven by native promoter. The fatty acid analysis indicated that the mutant KN203 had decreased MGDG and increased lysoPG, lysoPC and lysoPE content. Reduced carotenoid content in KN203 leaves was attributed to changes in fatty acid composition of chloroplast envelope membrane. Mutant KN231 had a T-DNA insertion in a gene encoding a RNA binding protein (RBP47C). KN231 leaf carotenoid levels were similar to wild type but their levels were significantly higher in their seeds. Two allelic mutants were selected to characterize the mutants. Overexpression of functional RBP47C in the mutants reverted to wild type phenotype in some overexpression mutants. A tandem repeat homologue of RBP47C, RBP47C’was identified. In-silico analysis predicted RBP47C to be a potential candidate for chloroplast localization.
63

Parathyroid Hormone Regulates Osterix Promoter Activity In Vitro and Expression In Vivo

Barbuto, Richard 01 December 2011 (has links)
Osterix (Osx) is a transcription factor required for osteoblast differentiation and bone formation. We previously demonstrated that continuous parathyroid hormone (PTH) treatment inhibited Osx expression in murine calvaria and osteoblastic UMR106-01 cells through the regulation of two regions on the Osx promoter. Mutational analysis of transcription factor elements within these regions revealed two "Sp-sites" were vital for Osx promoter activity. Blockage of these Sp-sites with Mithramycin A demonstrated their importance for Osx expression. Osx bound to its own promoter at these sites, while PTH treatment inhibited this association. PTH regulation of Osx expression in vivo was investigated in mice by: daily injection of PTH for 3 days, continuous infusion of PTH from osmotic pumps for 14 days, or mice fed a calcium-deficient diet for 21 days. Osx expression was decreased by daily injection, while Osx expression was stimulated in mice receiving continuous PTH infusion and mice fed a calcium-deficient diet.
64

Parathyroid Hormone Regulates Osterix Promoter Activity In Vitro and Expression In Vivo

Barbuto, Richard 01 December 2011 (has links)
Osterix (Osx) is a transcription factor required for osteoblast differentiation and bone formation. We previously demonstrated that continuous parathyroid hormone (PTH) treatment inhibited Osx expression in murine calvaria and osteoblastic UMR106-01 cells through the regulation of two regions on the Osx promoter. Mutational analysis of transcription factor elements within these regions revealed two "Sp-sites" were vital for Osx promoter activity. Blockage of these Sp-sites with Mithramycin A demonstrated their importance for Osx expression. Osx bound to its own promoter at these sites, while PTH treatment inhibited this association. PTH regulation of Osx expression in vivo was investigated in mice by: daily injection of PTH for 3 days, continuous infusion of PTH from osmotic pumps for 14 days, or mice fed a calcium-deficient diet for 21 days. Osx expression was decreased by daily injection, while Osx expression was stimulated in mice receiving continuous PTH infusion and mice fed a calcium-deficient diet.
65

Regulation of virulence and antimicrobial peptide resistance in Pseudomonas aeruginosa

Gooderham, William James 11 1900 (has links)
Pseudomonas aeruginosa is a ubiquitous environmental Gram-negative bacterium that is also a major opportunistic human pathogen in nosocomial infections and cystic fibrosis chronic lung infections. These P. aeruginosa infections can be extremely difficult to treat due to the high intrinsic antibiotic resistance and broad repertoire of virulence factors, both of which are highly regulated. It was demonstrated here that the psrA gene, encoding a transcriptional regulator, was up-regulated in response to sub-inhibitory concentrations of antimicrobial peptides. Compared to wild-type and the complemented mutant, a P. aeruginosa PAO1 psrA::Tn5 mutant displayed intrinsic super-susceptibility to polymyxin B, a last resort antimicrobial used against multi-drug resistant infections, and indolicidin, a bovine neutrophil antimicrobial peptide; this super-susceptibility phenotype correlated with increased outer membrane permeability. The psrA mutant was also defective in simple biofilm formation, rapid attachment, and normal swarming motility, phenotypes that could be complemented by the cloned psrA gene. The role of PsrA in global gene regulation was studied by comparing the psrA mutant to wild-type by microarray analysis, demonstrating that 178 genes were up or down-regulated by greater than 2-fold (P ≤0.05). Dysregulated genes included those encoding known PsrA targets, the type III secretion apparatus and effectors, adhesion and motility genes and a variety of metabolic, energy metabolism and outer membrane permeability genes. This indicates that PsrA is a central regulator of antimicrobial peptide resistance and virulence. P. aeruginosa containing a mutation in the PhoQ sensor kinase-encoding gene was highly attenuated for persistence in a rat chronic lung infection model. In addition, the polymyxin B hyper-resistant phoQ mutant displayed reduced type IV pili-dependent twitching motility and was less cytotoxic towards human bronchial epithelial cells, indicating that the virulence defect observed could be due at least in part to these phenotypes. Using microarrays it was further demonstrated that PhoQ regulates a large number of genes that are PhoP-independent and that the phoQ mutation leads to up-regulation of PhoP- and PmrA regulated genes as well as other genes consistent with its virulence phenotypes.
66

REGULATION OF EUKARYOTIC TRANSCRIPTIONAL ELONGATION AND ASSOCIATED DNA REPAIR

Sen, Rwik 01 May 2016 (has links)
Transcriptional elongation is a crucial step in eukaryotic gene regulation whose mis-regulation leads to cellular pathologies. This makes it quite imperative to aim for a better understanding of the processes regulating transcriptional elongation. An important process promoting the association of RNA Polymerase II (RNAPII) with the coding region of the active gene and hence transcriptional elongation is the monoubiquitination of histone H2B at lysine 123. A complex of an E2 conjugase, Rad6p, and an E3 ligase, Bre1p, is essential for this process. Consistent with the role of histone H2B monoubiquitination in promoting the association of RNAPII with the active gene, this process was found to be impaired in the absence of Rad6p or point mutation of lysine 123 to arginine (H2B-K123R). Intriguingly, the association of RNAPII with the coding region of the active gene was not impaired in the absence of Bre1p, even though Bre1p is essential for histone H2B monoubiquitination. However, deletion of Bre1p’s RING domain that is essential for histone H2B monoubiquitination led to an impaired RNAPII association with the active gene. This observation indicates a role of the non-RING domain of Bre1p in repressing the association of RNAPII with the active gene, resulting in no net decrease in RNAPII occupancy in the absence of Bre1p. Taken together, my results implicated both the stimulatory and repressive roles of the histone H2B ubiquitin ligase Bre1p in regulation of RNAPII association with the coding regions of active genes and hence transcriptional elongation. Interestingly, my work also revealed that for efficient transcriptional elongation by histone H2B monoubiquitination, its optimum level needs to be maintained by a proper balance between Rad6p-Bre1p-mediated ubiquitination and de-ubiquitination (DUB) by the DUB module of SAGA. It was found that Sus1p, a subunit of the DUB module, promotes transcriptional elongation, DNA repair and replication via regulation of histone H2B DUB. In addition to Rad6p- Bre1p and the DUB module, global level of histone H2B monoubiquitination is also critically regulated by Cdk9, a kinase essential for phosphorylation of the serine 2 residue in the C-terminal domain (CTD) of RNAPII, which promotes transcriptional elongation. Apart from serine phosphorylation, proline residues at RNAPII-CTD undergo isomerization by proline isomerases, which also regulate transcription. One of the proline isomerases, Rrd1p, has been previously implicated in transcription in response to rapamycin treatment. Based on this fact and Rrd1p’s known interaction with RNAPII-CTD, we predicted that Rrd1p might regulate transcription independently of rapamycin treatment. In agreement with this hypothesis, our work revealed Rrd1p’s role in facilitating transcription of both rapamycin responsive and non-responsive genes in the absence of rapamycin treatment. Consistently, the absence of Rrd1p led to an impaired nucleosomal disassembly at the active gene, which correlates with the role of Rrd1p in promoting transcription. This is because maintenance of proper nucleosomal dynamics is essential for efficient transcription. It is known that transcriptional elongation is facilitated by the regulation of nucleosomal dynamics via the histone chaperone, FACT. Efficient chromatin reassembly in the wake of elongating RNAPII contributing to the fidelity of transcription is promoted by FACT. Being evolutionarily conserved among eukaryotes, FACT is also known to regulate DNA replication and repair, apart from transcription. Intriguingly, FACT has been found to be upregulated in cancers while its downregulation leads to tumor cell death. However, the mechanism which fine-tunes FACT for normal cellular functions remained unknown. My studies revealed a novel mechanism of regulation of FACT by the ubiquitin-proteasome system in yeast. San1p, an E3 ligase involved in nuclear protein quality control, was found to associate with the active gene and regulate transcriptional elongation through its E3 ligase activity- mediated turnover of Spt16p component of FACT. This regulation was found to maintain optimum level of Spt16p/FACT to engage with the active gene for proper transcriptional elongation, DNA repair and replication. In spite of playing such crucial roles in gene regulation, it was not known how FACT is targeted to the active gene. We discovered that a direct physical interaction between FACT and Cet1p, the mRNA capping enzyme, targets FACT to the active gene independently of Cet1p’s mRNA capping activity. Such targeting of FACT to the active gene leads to the release of promoter proximally paused-RNAPII into transcriptional elongation. However, the progress of RNAPII along the active gene during transcriptional elongation is frequently impeded by various kinds of damages along the underlying template DNA. Even though some of these lesions are co-transcriptionally repaired, it was not known whether the repair of extremely toxic DNA double-strand breaks (DSBs) was coupled to transcription. My results showed that DSBs at the transcriptionally active state of a gene are repaired faster than at the inactive state but such repair was not mediated by a co-transcriptional recruitment of DSB repair factors. This observation is in contrast to other DNA repair pathways such as nucleotide excision repair (NER) where repair factors are co-transcriptionally recruited to the lesion containing DNA. In this regard, we found that an NER factor, Rad14p, co-transcriptionally associates with the active gene in the absence of DNA damage to promote transcription, which unraveled a new role of Rad14p in transcription in addition its established role in NER. In summary, my results provide significant novel insights into the regulation of transcriptional elongation and associated processes leading to better understanding of eukaryotic gene expression.
67

Regulation of gene expression in macrophage immune response

Alasoo, Kaur January 2017 (has links)
Gene expression quantitative trait loci (eQTL) mapping studies can provide mechanistic insights into the functions of disease-associated variants. However, many eQTLs are cell type and context specific. This is particularly relevant for immune cells, whose cellular function and behaviour can be substantially altered by external cues. Furthermore, understanding mechanisms behind eQTLs is hindered by the difficulty of identifying causal variants. We differentiated macrophages from induced pluripotent stem cells from 86 unrelated, healthy individuals derived as part of the Human Induced Pluripotent Stem Cells Initiative. We generated RNA-seq data from these cells in four experimental conditions: naïve, interferon- gamma (IFNɣ) treatment (18h), Salmonella infection (5h), and IFNγ treatment followed by Salmonella infection. We also measured chromatin accessibility with ATAC-seq in 31-42 individuals in the same four conditions. We detected gene expression QTLs (eQTLs) for 4326 genes, over 900 of which were condition-specific. We also detected a similar number of transcript ratio QTLs (trQTLs) that influenced mRNA processing and alternative splicing. Macrophage eQTLs and trQTLs were enriched for variants associated with Alzheimer’s disease, multiple autoimmune disorders and lipid traits. We also detected chromatin accessibility QTLs (caQTLs) for 14,602 accessible regions, including hundreds of long-range interactions. Joint analysis of eQTLs with caQTLs allowed us to greatly reduce the set of credible causal variants, often pinpointing to a single most likely variant. We found that caQTLs were less condition- specific than eQTLs and ~50% of the stimulation-specific eQTLs manifested on the chromatin level already in the naive cells. These observations might help to explain the discrepancy between strong enrichment of diseases associations in regulatory elements but only modest overlap with current eQTL studies, suggesting that many regulatory elements are in a ‘primed’ state waiting for an appropriate environmental signal before regulating gene expression.
68

Cardiac-enriched BAF chromatin-remodeling complex subunit Baf60c regulates gene expression programs essential for heart development and function

Sun, Xin, Hota, Swetansu K., Zhou, Yu-Qing, Novak, Stefanie, Miguel-Perez, Dario, Christodoulou, Danos, Seidman, Christine E., Seidman, J. G., Gregorio, Carol C., Henkelman, R. Mark, Rossant, Janet, Bruneau, Benoit G. 15 January 2018 (has links)
How chromatin-remodeling complexes modulate gene networks to control organ-specific properties is not well understood. For example, Baf60c (Smarcd3) encodes a cardiac-enriched subunit of the SWI/SNF-like BAF chromatin complex, but its role in heart development is not fully understood. We found that constitutive loss of Baf60c leads to embryonic cardiac hypoplasia and pronounced cardiac dysfunction. Conditional deletion of Baf60c in cardiomyocytes resulted in postnatal dilated cardiomyopathy with impaired contractile function. Baf60c regulates a gene expression program that includes genes encoding contractile proteins, modulators of sarcomere function, and cardiac metabolic genes. Many of the genes deregulated in Baf60c null embryos are targets of the MEF2/SRF co-factor Myocardin (MYOCD). In a yeast two-hybrid screen, we identified MYOCD as a BAF60c interacting factor; we showed that BAF60c and MYOCD directly and functionally interact. We conclude that Baf60c is essential for coordinating a program of gene expression that regulates the fundamental functional properties of cardiomyocytes.
69

Regulation of virulence and antimicrobial peptide resistance in Pseudomonas aeruginosa

Gooderham, William James 11 1900 (has links)
Pseudomonas aeruginosa is a ubiquitous environmental Gram-negative bacterium that is also a major opportunistic human pathogen in nosocomial infections and cystic fibrosis chronic lung infections. These P. aeruginosa infections can be extremely difficult to treat due to the high intrinsic antibiotic resistance and broad repertoire of virulence factors, both of which are highly regulated. It was demonstrated here that the psrA gene, encoding a transcriptional regulator, was up-regulated in response to sub-inhibitory concentrations of antimicrobial peptides. Compared to wild-type and the complemented mutant, a P. aeruginosa PAO1 psrA / Science, Faculty of / Microbiology and Immunology, Department of / Graduate
70

Understanding the epigenome using system genetics

Timmer, Sander Willem January 2015 (has links)
Genetics has been successful in associating DNA sequence variants to both dichotomous and continuous traits in a variety of organisms, from plant and farm animal studies to human disease. With the advent of high-throughput genotyping, there has been an almost routine gen- eration of genome-wide association studies (GWAS) between human disease traits and genomic regions. Despite this success, a particular frustration is that the majority of associated loci are in non-coding regions of the genome and thus interpretation is hard. To improve characterisation of non-coding regions, molecular as- says can be used as a phenotype, and subsequently be used to explain how genetics alter molecular mechanisms. In this thesis, the inter- play of three molecular assays that are involved in regulating gene expression is studied. On 60 individuals, several assays are performed: FAIRE-chip, CTCF- seq, RNA-seq and DNA-seq. In the first part, the discovery and characteristics of FAIRE-QTLs is presented. The identified FAIRE-QTLs show strong overlap with other molecular QTLs, histone modifications, and transcription factors. The second part consists of the integration of genome-wide molecu- lar assays in a human population to reconstruct the human epigenome. Each of the molecular assays is associated with each of the other assays to discover phenotype-to-phenotype correlations. Furthermore, QTL data are used to dissect the causality for these phenotype-to-phenotype correlations in a system genetic manner. The third part presents a comprehensive view of CTCF binding on the X chromosome, and its implications for X-chromosome inactivation. A novel X chromosome-wide CTCF effect is observed. Using the gender of each of the cell lines, observations are made about which CTCF sites are dosage-compensated, active on both chromosomes, or are only bound in females.

Page generated in 0.0375 seconds