• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 466
  • 81
  • 26
  • 26
  • 26
  • 26
  • 17
  • 15
  • Tagged with
  • 561
  • 444
  • 355
  • 355
  • 354
  • 354
  • 178
  • 95
  • 88
  • 88
  • 88
  • 82
  • 80
  • 78
  • 70
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Finite element models of coseismic deformation due to the 2009 L'Aquila (Italy) and 2008 Wenchuan(China) earthquakes

Kyriakopoulos, Christodoulos <1978> 06 May 2011 (has links)
The topic of my Ph.D. thesis is the finite element modeling of coseismic deformation imaged by DInSAR and GPS data. I developed a method to calculate synthetic Green functions with finite element models (FEMs) and then use linear inversion methods to determine the slip distribution on the fault plane. The method is applied to the 2009 L’Aquila Earthquake (Italy) and to the 2008 Wenchuan earthquake (China). I focus on the influence of rheological features of the earth's crust by implementing seismic tomographic data and the influence of topography by implementing Digital Elevation Models (DEM) layers on the FEMs. Results for the L’Aquila earthquake highlight the non-negligible influence of the medium structure: homogeneous and heterogeneous models show discrepancies up to 20% in the fault slip distribution values. Furthermore, in the heterogeneous models a new area of slip appears above the hypocenter. Regarding the 2008 Wenchuan earthquake, the very steep topographic relief of Longmen Shan Range is implemented in my FE model. A large number of DEM layers corresponding to East China is used to achieve the complete coverage of the FE model. My objective was to explore the influence of the topography on the retrieved coseismic slip distribution. The inversion results reveals significant differences between the flat and topographic model. Thus, the flat models frequently adopted are inappropriate to represent the earth surface topographic features and especially in the case of the 2008 Wenchuan earthquake.
82

InSAR deformation measurements of the earthquake cycle in transcurrent tectonic domains, analytical and analog modeling

Pezzo, Giuseppe <1983> 28 March 2012 (has links)
I applied the SBAS-DInSAR method to the Mattinata Fault (MF) (Southern Italy) and to the Doruneh Fault System (DFS) (Central Iran). In the first case, I observed limited internal deformation and determined the right lateral kinematic pattern with a compressional pattern in the northern sector of the fault. Using the Okada model I inverted the observed velocities defining a right lateral strike slip solution for the MF. Even if it fits the data within the uncertainties, the modeled slip rate of 13-15 mm yr-1 seems too high with respect to the geological record. Concerning the Western termination of DFS, SAR data confirms the main left lateral transcurrent kinematics of this fault segment, but reveal a compressional component. My analytical model fits successfully the observed data and quantifies the slip in ~4 mm yr-1 and ~2.5 mm yr-1 of pure horizontal and vertical displacement respectively. The horizontal velocity is compatible with geological record. I applied classic SAR interferometry to the October–December 2008 Balochistan (Central Pakistan) seismic swarm; I discerned the different contributions of the three Mw > 5.7 earthquakes determining fault positions, lengths, widths, depths and slip distributions, constraining the other source parameters using different Global CMT solutions. A well constrained solution has been obtained for the 09/12/2008 aftershock, whereas I tested two possible fault solutions for the 28-29/10/08 mainshocks. It is not possible to favor one of the solutions without independent constraints derived from geological data. Finally I approached the study of the earthquake-cycle in transcurrent tectonic domains using analog modeling, with alimentary gelatins like crust analog material. I successfully joined the study of finite deformation with the earthquake cycle study and sudden dislocation. A lot of seismic cycles were reproduced in which a characteristic earthquake is recognizable in terms of displacement, coseismic velocity and recurrence time.
83

Spectral-Element and Adjoint 3D Full-Wave Tomography for the Lithosphere of Central Italy

Magnoni, Federica <1982> 28 March 2012 (has links)
The primary objective of this thesis is to obtain a better understanding of the 3D velocity structure of the lithosphere in central Italy. To this end, I adopted the Spectral-Element Method to perform accurate numerical simulations of the complex wavefields generated by the 2009 Mw 6.3 L’Aquila event and by its foreshocks and aftershocks together with some additional events within our target region. For the mainshock, the source was represented by a finite fault and different models for central Italy, both 1D and 3D, were tested. Surface topography, attenuation and Moho discontinuity were also accounted for. Three-component synthetic waveforms were compared to the corresponding recorded data. The results of these analyses show that 3D models, including all the known structural heterogeneities in the region, are essential to accurately reproduce waveform propagation. They allow to capture features of the seismograms, mainly related to topography or to low wavespeed areas, and, combined with a finite fault model, result into a favorable match between data and synthetics for frequencies up to ~0.5 Hz. We also obtained peak ground velocity maps, that provide valuable information for seismic hazard assessment. The remaining differences between data and synthetics led us to take advantage of SEM combined with an adjoint method to iteratively improve the available 3D structure model for central Italy. A total of 63 events and 52 stations in the region were considered. We performed five iterations of the tomographic inversion, by calculating the misfit function gradient - necessary for the model update - from adjoint sensitivity kernels, constructed using only two simulations for each event. Our last updated model features a reduced traveltime misfit function and improved agreement between data and synthetics, although further iterations, as well as refined source solutions, are necessary to obtain a new reference 3D model for central Italy tomography.
84

Reconstruction of Etna recent flank eruptions for assessing diversion barrier project

Scifoni, Silvia <1981> 16 March 2012 (has links)
The thesis contributed to the volcanic hazard assessment through the reconstruction of some historical flank eruptions of Etna in order to obtain quantitative data (volumes, effusion rates, etc.) for characterizing the recent effusive activity, quantifying the impact on the territory and defining mitigation actions for reducing the volcanic risk as for example containment barriers. The reconstruction was based on a quantitative approach using data extracted from aerial photographs and topographic maps. The approach allows to obtain the temporal evolution of the lava flow field and estimating the Time Average Discharge Rate (TADR) by dividing the volume emplaced over a given time interval for the corresponding duration. The analysis concerned the 2001, 1981 and 1928 Etna eruptions. The choice of these events is linked to their impact on inhabited areas. The results of the analysis showed an extraordinarily high effusion rate for the 1981 and 1928 eruptions (over 600 m^3/s), unusual for Etna eruptions. For the 1981 Etna eruption an eruptive model was proposed to explain the high discharge rate. The obtained TADRs were used as input data for simulations of the propagation of the lava flows for evaluating different scenarios of volcanic hazard and analyse different mitigation actions against lava flow invasion. It was experienced how numerical simulations could be adopted for evaluating the effectiveness of barrier construction and for supporting their optimal design. In particular, the gabions were proposed as an improvement for the construction of barriers with respect to the earthen barriers. The gabion barriers allow to create easily modular structures reducing the handled volumes and the intervention time. For evaluating operational constrain an experimental test was carried out to test the filling of the gabions with volcanic rock and evaluating their deformation during transport and placement.
85

Numerical models of trench migration for lateral heterogeneous subducting plates

Magni, Valentina <1984> 16 March 2012 (has links)
The aim of this Thesis is to investigate the effect of heterogeneities within the subducting plate on the dynamics of subduction. In particular, I study the motion of the trench for oceanic and continental subduction, first, separately, and, then, together in the same system to understand how they interact. The understanding of these features is fundamental to reconstruct the evolution of complex subduction zones, such as the Central Mediterranean. For this purpose, I developed 2D and 3D numerical models of oceanic and continental subduction where the rheological, geometrical and compositional properties of the plates are varied. In these models, the trench and the overriding plate move self-consistently as a function of the dynamics of the system. The effect of continental subduction on trench migration is largely investigated. Results from a parametric study showed that despite different rheological properties of the plates, all models with a uniform continental crust share the same kinematic behaviour: the trench starts to advance once the continent arrives at the subduction zone. Hence, the advancing mode in continental collision scenarios is at least partly driven by an intrinsic feature of the system. Moreover, the presence of a weak lower crust within the continental plate can lead to the occurrence of delamination. Indeed, by changing the viscosity of the lower crust, both delamination and slab detachment can occur. Delamination is favoured by a low viscosity value of the lower crust, because this makes the mechanical decoupling easier between crust and lithospheric mantle. These features are observed both in 2D and 3D models, but the numerical results of the 3D models also showed that the rheology of the continental crust has a very strong effect on the dynamics of the whole system, since it influences not only the continental part of plate but also the oceanic sides.
86

Refined Estimation of Earthquake Source Parameters: Methods, Applications and Scaling Relationships

Orefice, Antonella <1983> 28 March 2012 (has links)
The objective of this work of thesis is the refined estimations of source parameters. To such a purpose we used two different approaches, one in the frequency domain and the other in the time domain. In frequency domain, we analyzed the P- and S-wave displacement spectra to estimate spectral parameters, that is corner frequencies and low frequency spectral amplitudes. We used a parametric modeling approach which is combined with a multi-step, non-linear inversion strategy and includes the correction for attenuation and site effects. The iterative multi-step procedure was applied to about 700 microearthquakes in the moment range 1011-1014 N•m and recorded at the dense, wide-dynamic range, seismic networks operating in Southern Apennines (Italy). The analysis of the source parameters is often complicated when we are not able to model the propagation accurately. In this case the empirical Green function approach is a very useful tool to study the seismic source properties. In fact the Empirical Green Functions (EGFs) consent to represent the contribution of propagation and site effects to signal without using approximate velocity models. An EGF is a recorded three-component set of time-histories of a small earthquake whose source mechanism and propagation path are similar to those of the master event. Thus, in time domain, the deconvolution method of Vallée (2004) was applied to calculate the source time functions (RSTFs) and to accurately estimate source size and rupture velocity. This technique was applied to 1) large event, that is Mw=6.3 2009 L’Aquila mainshock (Central Italy), 2) moderate events, that is cluster of earthquakes of 2009 L’Aquila sequence with moment magnitude ranging between 3 and 5.6, 3) small event, i.e. Mw=2.9 Laviano mainshock (Southern Italy).
87

Sea Level Variations from Decades to Millennia: A few Case Studies

Ruggieri, Gabriella <1978> 16 March 2012 (has links)
The main goals of this Ph.D. study are to investigate the regional and global geophysical components related to present polar ice melting and to provide independent cross validation checks of GIA models using both geophysical data detected by satellite mission, and geological observations from far field sites, in order to determine a lower and upper bound of uncertainty of GIA effect. The subject of this Thesis is the sea level change from decades to millennia scale. Within ice2sea collaboration, we developed a Fortran numerical code to analyze the local short-term sea level change and vertical deformation resulting from the loss of ice mass. This method is used to investigate polar regions: Greenland and Antarctica. We have used mass balance based on ICESat data for Greenland ice sheet and a plausible mass balance for Antarctic ice sheet. We have determined the regional and global fingerprint of sea level variations, vertical deformations of the solid surface of the Earth and variations of shape of the geoid for each ice source mentioned above. The coastal areas are affected by the long wavelength component of GIA process. Hence understanding the response of the Earth to loading is crucial in various contexts. Based on the hypothesis that Earth mantle materials obey to a linear rheology, and that the physical parameters of this rheology can be only characterized by their depth dependence, we investigate the Glacial Isostatic Effect upon the far field sites of Mediterranean area using an improved SELEN program. We presented new and revised observations for archaeological fish tanks located along the Tyrrhenian and Adriatic coast of Italy and new RSL for the SE Tunisia. Spatial and temporal variations of the Holocene sea levels studied in central Italy and Tunisia, provided important constraints on the melting history of the major ice sheets.
88

Deep geometry of subduction below the Andean belt of Colombia as revealed by seismic tomography

Seccia, Danilo <1980> 28 March 2012 (has links)
In this study new tomographic models of Colombia were calculated. I used the seismicity recorded by the Colombian seismic network during the period 2006-2009. In this time period, the improvement of the seismic network yields more stable hypocentral results with respect to older data set and allows to compute new 3D Vp and Vp/Vs models. The final dataset consists of 10813 P- and 8614 S-arrival times associated to 1405 earthquakes. Tests with synthetic data and resolution analysis indicate that velocity models are well constrained in central, western and southwestern Colombia to a depth of 160 km; the resolution is poor in the northern Colombia and close to Venezuela due to a lack of seismic stations and seismicity. The tomographic models and the relocated seismicity indicate the existence of E-SE subducting Nazca lithosphere beneath central and southern Colombia. The North-South changes in Wadati-Benioff zone, Vp & Vp/Vs pattern and volcanism, show that the downgoing plate is segmented by slab tears E-W directed, suggesting the presence of three sectors. Earthquakes in the northernmost sector represent most of the Colombian seimicity and concentrated on 100-170 km depth interval, beneath the Eastern Cordillera. Here a massive dehydration is inferred, resulting from a delay in the eclogitization of a thickened oceanic crust in a flat-subduction geometry. In this sector a cluster of intermediate-depth seismicity (Bucaramanga Nest) is present beneath the elbow of the Eastern Cordillera, interpreted as the result of massive and highly localized dehydration phenomenon caused by a hyper-hydrous oceanic crust. The central and southern sectors, although different in Vp pattern show, conversely, a continuous, steep and more homogeneous Wadati-Benioff zone with overlying volcanic areas. Here a "normalthickened" oceanic crust is inferred, allowing for a gradual and continuous metamorphic reactions to take place with depth, enabling the fluid migration towards the mantle wedge.
89

Fault delineation and stress orientations from the analysis of background, low magnitude seismicity in Southern Apennines (Italy)

Matrullo, Emanuela <1984> 16 March 2012 (has links)
The aim of this work was to show that refined analyses of background, low magnitude seismicity allow to delineate the main active faults and to accurately estimate the directions of the regional tectonic stress that characterize the Southern Apennines (Italy), a structurally complex area with high seismic potential. Thanks the presence in the area of an integrated dense and wide dynamic network, was possible to analyzed an high quality microearthquake data-set consisting of 1312 events that occurred from August 2005 to April 2011 by integrating the data recorded at 42 seismic stations of various networks. The refined seismicity location and focal mechanisms well delineate a system of NW-SE striking normal faults along the Apenninic chain and an approximately E-W oriented, strike-slip fault, transversely cutting the belt. The seismicity along the chain does not occur on a single fault but in a volume, delimited by the faults activated during the 1980 Irpinia M 6.9 earthquake, on sub-parallel predominant normal faults. Results show that the recent low magnitude earthquakes belongs to the background seismicity and they are likely generated along the major fault segments activated during the most recent earthquakes, suggesting that they are still active today thirty years after the mainshock occurrences. In this sense, this study gives a new perspective to the application of the high quality records of low magnitude background seismicity for the identification and characterization of active fault systems. The analysis of the stress tensor inversion provides two equivalent models to explain the microearthquake generation along both the NW-SE striking normal faults and the E- W oriented fault with a dominant dextral strike-slip motion, but having different geological interpretations. We suggest that the NW-SE-striking Africa-Eurasia convergence acts in the background of all these structures, playing a primary and unifying role in the seismotectonics of the whole region.
90

Kinematics of the Sicily and Calabria Subduction System from Elastic Block Modeling of GPS Data

Mastrolembo Ventura, Brunella <1984> 16 March 2012 (has links)
We use data from about 700 GPS stations in the EuroMediterranen region to investigate the present-day behavior of the the Calabrian subduction zone within the Mediterranean-scale plates kinematics and to perform local scale studies about the strain accumulation on active structures. We focus attenction on the Messina Straits and Crati Valley faults where GPS data show extentional velocity gradients of ∼3 mm/yr and ∼2 mm/yr, respectively. We use dislocation model and a non-linear constrained optimization algorithm to invert for fault geometric parameters and slip-rates and evaluate the associated uncertainties adopting a bootstrap approach. Our analysis suggest the presence of two partially locked normal faults. To investigate the impact of elastic strain contributes from other nearby active faults onto the observed velocity gradient we use a block modeling approach. Our models show that the inferred slip-rates on the two analyzed structures are strongly impacted by the assumed locking width of the Calabrian subduction thrust. In order to frame the observed local deformation features within the present- day central Mediterranean kinematics we realyze a statistical analysis testing the indipendent motion (w.r.t. the African and Eurasias plates) of the Adriatic, Cal- abrian and Sicilian blocks. Our preferred model confirms a microplate like behaviour for all the investigated blocks. Within these kinematic boundary conditions we fur- ther investigate the Calabrian Slab interface geometry using a combined approach of block modeling and χ2ν statistic. Almost no information is obtained using only the horizontal GPS velocities that prove to be a not sufficient dataset for a multi-parametric inversion approach. Trying to stronger constrain the slab geometry we estimate the predicted vertical velocities performing suites of forward models of elastic dislocations varying the fault locking depth. Comparison with the observed field suggest a maximum resolved locking depth of 25 km.

Page generated in 0.0925 seconds