Spelling suggestions: "subject:"GESIMA, delmodell, MacCormack-Schema"" "subject:"GESIMA, cellmodell, MacCormack-Schema""
1 |
Die Symmetrisierung des MacCormack-Schemas im Atmosphärenmodell GESIMAHinneburg, Detlef 02 November 2016 (has links)
The dynamical equations of the non-hydrostatic mesoscale model GESIMA are solved numerically on an Arakawa-C grid. Because of the staggered grid most of the prognostic variables and their derivatives have identical local positions. The functional connection between the fluxes and velocities defined at different places is managed by the MacCormack scheme ignoring the local diff erences. The systematic errors are diminished by means of alternate down- and upwind shifting of the fluxes after each time step. A cycle of 8 time steps is necessary to achieve approximately symmetrical conditions because of the shift
permutations. Nevertheless, the systematic errors are not completely removed and the iterative calculation of the dynamic pressure is retarded by starting values from eight time steps ago (same permutation of shift directions). Both shortcomings are avoided by a symmetrized MacCormack scheme without the loss of its advantages of handling strong gradients. The new method is based on the symmetrization of the equations with respect to the passive quantities and on the simultaneous calculation of each equation for opposite shift directions of the active variables followed by averaging both increments. The method is tested for a typical example. / Die dynamischen Modellgleichungen des nicht-hydrostatischen mesoskaligen Atmosphärenmodells GESIMA sind numerisch auf einem Arakawa-C-Gitter gelöst. Durch die versetzte Anordnung der Größen auf dem Gitter besitzen die Differenzenquotienten (auf den rechten Seiten) und die prognostizierten Größen (auf den linken Seiten) von vornherein die gleiche lokale Position, allerdings nicht in jedem Fall. Das bisher in GESIMA praktizierte MacCormack-Schema stellt den Zusammenhang zwischen den an verschiedenen Gitterstellen definierten Flüssen und Geschwindigkeiten her, indem die Ortsdifferenz zwischen Fluß- und
zugehöriger Geschwindigkeitskomponente ignoriert wird. Zur Verringerung der systematischen Fehler erfolgt die direkte Zuordnung einer Flußkomponente abwechselnd (sequentiell) in einem Zeitschritt zur flußabwärts benachbarten Geschwindigkeitskomponente und im nächsten Zeitschritt zur flußaufwärts benachbarten. Nach Ablauf von jeweils 8 Zeitschritten sind die notwendigen Zuordnungspermutationen der 3 Vektorkomponenten zwecks einer annähernden Symmetrisierung des Verfahrens erreicht. Nachteile des bisherigen Verfahrens sind (a) der nicht vollständige Abbau der jedem Zeitschritt immanenten systematischen Zuordnungsfehler und (b) ein stark erhöhter Rechenaufwand für die iterative Bestimmung des dynamischen Druckes durch einen um 8 Zeitschritte (jeweils gleiche Zuordnungspermutation) zurückliegenden Startwert. Beide Nachteile werden durch ein neues, symmetrisiertes MacCormack-Schema vermieden, ohne daß auf die Vorteile bei der Handhabung starker Gradienten verzichtet werden muß. Das Verfahren beruht (a) auf der Symmetrisierung der lokalen Zuordnung für die passiven Größen innerhalb einer Gleichung (d.h. der nicht durch sie prognostizierten Größen) und (b) auf der simultanen Durchführung der zwei entgegengesetzten Zuordnungsrichtungen für jede der 3 Geschwindigkeitskomponenten innerhalb eines Zeitschrittes mit anschließender Mittelung der beiden Inkremente. Das neue Verfahren wurde anhand eines Beispiels geprüft.
|
Page generated in 0.0399 seconds