1 |
Identifying Novel Protein Interactors of the Glucagon Superfamily of ReceptorsGaisano, Gregory 19 January 2010 (has links)
G-protein coupled receptors (GPCRs) have been shown to act as part of GPCR associated protein complexes (GAPCs) which are required to appropriately transduce downstream signaling pathways leading to specific cellular actions. I hypothesize that there are distinct molecular effectors that couple to the glucagon superfamily of B-class GPCRs (glucagon, GLP-1, GLP-2, GIP receptors) to effect the myriad of reported actions in numerous target cells including regulation of insulin secretion, intestinal growth and appetite suppression. GLP-1R, GIPR, GLP-2R and GCGR were screened using a newly developed membrane-based split-ubiquitin yeast two-hybrid (MYTH) system to reveal 181 novel candidate protein interactors associated with signal transduction, transport, metabolism and cell survival. Each candidate was validated using yeast two-hybrid prey retransformation tests and by co-purification to confirm coupling to each receptors. The present work is the first demonstration of a split-ubiquitin interaction screen using in situ membrane expressed GPCRs of the secretin-like B class.
|
2 |
Identifying Novel Protein Interactors of the Glucagon Superfamily of ReceptorsGaisano, Gregory 19 January 2010 (has links)
G-protein coupled receptors (GPCRs) have been shown to act as part of GPCR associated protein complexes (GAPCs) which are required to appropriately transduce downstream signaling pathways leading to specific cellular actions. I hypothesize that there are distinct molecular effectors that couple to the glucagon superfamily of B-class GPCRs (glucagon, GLP-1, GLP-2, GIP receptors) to effect the myriad of reported actions in numerous target cells including regulation of insulin secretion, intestinal growth and appetite suppression. GLP-1R, GIPR, GLP-2R and GCGR were screened using a newly developed membrane-based split-ubiquitin yeast two-hybrid (MYTH) system to reveal 181 novel candidate protein interactors associated with signal transduction, transport, metabolism and cell survival. Each candidate was validated using yeast two-hybrid prey retransformation tests and by co-purification to confirm coupling to each receptors. The present work is the first demonstration of a split-ubiquitin interaction screen using in situ membrane expressed GPCRs of the secretin-like B class.
|
Page generated in 0.0207 seconds