• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Semi-Supervised Deep Learning Approach for Transportation Mode Identification Using GPS Trajectory Data

Dabiri, Sina 11 December 2018 (has links)
Identification of travelers' transportation modes is a fundamental step for various problems that arise in the domain of transportation such as travel demand analysis, transport planning, and traffic management. This thesis aims to identify travelers' transportation modes purely based on their GPS trajectories. First, a segmentation process is developed to partition a user's trip into GPS segments with only one transportation mode. A majority of studies have proposed mode inference models based on hand-crafted features, which might be vulnerable to traffic and environmental conditions. Furthermore, the classification task in almost all models have been performed in a supervised fashion while a large amount of unlabeled GPS trajectories has remained unused. Accordingly, a deep SEmi-Supervised Convolutional Autoencoder (SECA) architecture is proposed to not only automatically extract relevant features from GPS segments but also exploit useful information in unlabeled data. The SECA integrates a convolutional-deconvolutional autoencoder and a convolutional neural network into a unified framework to concurrently perform supervised and unsupervised learning. The two components are simultaneously trained using both labeled and unlabeled GPS segments, which have already been converted into an efficient representation for the convolutional operation. An optimum schedule for varying the balancing parameters between reconstruction and classification errors are also implemented. The performance of the proposed SECA model, trip segmentation, the method for converting a raw trajectory into a new representation, the hyperparameter schedule, and the model configuration are evaluated by comparing to several baselines and alternatives for various amounts of labeled and unlabeled data. The experimental results demonstrate the superiority of the proposed model over the state-of-the-art semi-supervised and supervised methods with respect to metrics such as accuracy and F-measure. / Master of Science / Identifying users' transportation modes (e.g., bike, bus, train, and car) is a key step towards many transportation related problems including (but not limited to) transport planning, transit demand analysis, auto ownership, and transportation emissions analysis. Traditionally, the information for analyzing travelers' behavior for choosing transport mode(s) was obtained through travel surveys. High cost, low-response rate, time-consuming manual data collection, and misreporting are the main demerits of the survey-based approaches. With the rapid growth of ubiquitous GPS-enabled devices (e.g., smartphones), a constant stream of users' trajectory data can be recorded. A user's GPS trajectory is a sequence of GPS points, recorded by means of a GPS-enabled device, in which a GPS point contains the information of the device geographic location at a particular moment. In this research, users' GPS trajectories, rather than traditional resources, are harnessed to predict their transportation mode by means of statistical models. With respect to the statistical models, a wide range of studies have developed travel mode detection models using on hand-designed attributes and classical learning techniques. Nonetheless, hand-crafted features cause some main shortcomings including vulnerability to traffic uncertainties and biased engineering justification in generating effective features. A potential solution to address these issues is by leveraging deep learning frameworks that are capable of capturing abstract features from the raw input in an automated fashion. Thus, in this thesis, deep learning architectures are exploited in order to identify transport modes based on only raw GPS tracks. It is worth noting that a significant portion of trajectories in GPS data might not be annotated by a transport mode and the acquisition of labeled data is a more expensive and labor-intensive task in comparison with collecting unlabeled data. Thus, utilizing the unlabeled GPS trajectory (i.e., the GPS trajectories that have not been annotated by a transport mode) is a cost-effective approach for improving the prediction quality of the travel mode detection model. Therefore, the unlabeled GPS data are also leveraged by developing a novel deep-learning architecture that is capable of extracting information from both labeled and unlabeled data. The experimental results demonstrate the superiority of the proposed models over the state-of-the-art methods in literature with respect to several performance metrics.
2

Pattern Exploration from Citizen Geospatial Data

Ke Liu (5930729) 17 January 2019 (has links)
Due to the advances in location-acquisition techniques, citizen geospatial data has emerged with opportunity for research, development, innovation, and business. A variety of research has been developed to study society and citizens through exploring patterns from geospatial data. In this thesis, we investigate patterns of population and human sentiments using GPS trajectory data and geo-tagged tweets. Kernel density estimation and emerging hot spot analysis are first used to demonstrate population distribution across space and time. Then a flow extraction model is proposed based on density difference for human movement detection and visualization. Case studies with volleyball game in West Lafayette and traffics in Puerto Rico verify the effectiveness of this method. Flow maps are capable of tracking clustering behaviors and direction maps drawn upon the orientation of vectors can precisely identify location of events. This thesis also analyzes patterns of human sentiments. Polarity of tweets is represented by a numeric value based on linguistics rules. Sentiments of four US college cities are analyzed according to its distribution on citizen, time, and space. The research result suggests that social media can be used to understand patterns of public sentiment and well-being.
3

Monitoring Bicycle Safety through GPS data and Deep Learning Anomaly Detection

Yaqoob, Shumayla, Cafiso, Salvatore, Morabito, Giacomo, Pappalardo, Giuseppina 02 January 2023 (has links)
Cycling has always been considered a sustainable and healthy mode of transport. Moreover, during Covid-19 period, cycling was further appreciated. by citizens as an individual opportunity of mobility. As a counterpart of the growth in the num.ber ofbicyclists and of riding k:ilometres, bicyclist safety has become a challenge as the unique road transport mode with an increasing trend of crash fatalities in EU (Figure 1). When compared to the traditional road safety network screening. availability of suitable data for crashes involving bicyclists is more difficult because of underreporting and traffic flow issues. In such framework, new technologies and digital transformation in smart cities and communities is offering new opportunities of data availability which requires also different approaches for collection and analysis. An experimental test was carried out to collect data ftom different users with an instrumented bicycle equipped with Global Navigation Satellite Systems (GNSS) and cameras. A panel of experts was asked to review the collected data to identify and score the severity of the safety critical events (CSE) reaching a good consensus. Anyway, manual observation and classi.fication of CSE is a time consu.ming and unpractical approach when large amount of data must be analysed. Moreover, due to the complex correlation between precrash driving behaviour and due to high dimensionality of the data, traditional statistical methods might not be appropriate in t.bis context. Deep learning-based model have recently gained significant attention in the lit.erature for time series data analysis and for anomaly detection, but generally applied to vehicles' mobility and not to micro-mobility. We present and discuss data requirements and treatment to get suitable infonnation from the GNSS devices, the development of an experimental :framework: where convolutional neural networks (CNN) is applied to integrate multiple GPS data streams of bicycle kinematics to detect the occurrence of a CSE.

Page generated in 0.093 seconds