Spelling suggestions: "subject:"ransportation bnetwork companies (TNCs)"" "subject:"ransportation bnetwork caompanies (TNCs)""
1 |
QUANTIFYING THE IMPACT OF TRANSPORTATION NETWORK COMPANIES (TNCs) ON TRAFFIC CONGESTION IN SAN FRANCISCORoy, Sneha 01 January 2019 (has links)
This research investigates whether Transportation Network Companies (TNCs), such as Uber and Lyft, live up to their stated vision of reducing congestion by complementing transit and reducing car ownership in major cities. The objective of this research study is to answer the question: are TNCs are correlated to traffic congestion in the city of San Francisco? If found to be so, do they increase or decrease traffic congestion for the case of San Francisco? If and how TNC pickups and drop-offs impact traffic congestion within San Francisco? And finally, how does the magnitude of this measured command of TNCs on congestion compare to that caused by pre-existing conventional drivers of traffic and congestion change? Apart from answering these questions, it is also sought to establish a framework to be able to include TNCs, a seemingly fledgling mode of transportation but one that is demonstrably shaping and modifying extant transportation and mode choice trends, as part of the travel demand models estimated by any geographic jurisdiction.
Traffic congestion has worsened noticeably in San Francisco and other major cities over the past few years. Part of this change could reasonably be explained by strong economic growth or other standard factors such as road and transit network changes. The sharp increase in travel times and congestion also corresponds to the emergence of TNCs, raising the question of whether the two trends may be related. Existing research has produced conflicting results and been hampered by a lack of data.
Using data scraped from the Application Programming Interfaces (APIs) of two TNCs, combined with observed travel time data, this research finds that contrary to their vision, TNCs are the biggest contributor to growing traffic congestion in San Francisco. Between 2010 and 2016, weekday vehicle hours of delay increased by 62%, compared to 22% in a counterfactual 2016 scenario without TNCs. The findings provide insight into expected changes in major cities as TNCs continue to grow, informing decisions about how to integrate TNCs into the existing transportation system.
This research also decomposes the contributors to increased congestion in San Francisco between 2010 and 2016, considering contributions from five incremental effects: road and transit network changes, population growth, employment growth, TNC volumes, and the effect of TNC pick-ups and Drop-offs. It is so done through a series of controlled travel demand model runs, supplemented with observed TNC data. The results show that road and transit network changes over this period have only a small effect on congestion, population and employment growth are important contributors, and that TNCs are the biggest contributor to growing congestion over this period, contributing about half of the increase in vehicle hours of delay, and adding to worsening travel time reliability. This research contradicts several studies that suggest TNCs may reduce congestion and adds evidence in support of a recent empirical analysis showing that their net effect is to increase congestion. This research gives transportation planners a better understanding of the causes of growing congestion, allowing them to more effectively craft strategies to mitigate or adapt to it.
|
2 |
Crash Potentials of Transportation Network Companies from Large-scale Trajectories and Socioeconomic InequalitiesMithun Debnath (19131421) 17 July 2024 (has links)
<p dir="ltr">Transportation Network Companies (TNCs) have increased significantly over the last decade, changing the urban mobility dynamics by shifting people from other modes of transportation, potentially affecting safety. While TNC companies promised to enhance urban mobility with more convenient end-to-end services, they were found to contribute to externalities like traffic congestion and safety issues. A deeper analysis is required to test the promise of TNC services and their impacts on cities. This study investigated the safety implications of the surge of TNC services in New York City (NYC) from 2017 to 2019. Specifically, we analyzed the changes in traffic safety performances using surrogate safety measures (SSMs) from 2017 to 2019 based on large-scale GPS trajectories generated by TNC vehicles in NYC.</p><p dir="ltr">This research utilized the twenty-eight days of high-quality and large-scale GPS-based trajectories of Uber vehicles to determine the critical surrogate safety measures (SSMs). To determine the potential traffic conflict and safety from SSMs, this research determined the SSMs based on evasive actions. In addition, this research also utilized real-world historical crash events, traffic flow, road conditions, land use, and congestion index to explore the relationship between critical SSMs and accidents. Additionally, this research extends to assess the socioeconomic inequalities from the perspective of increased TNCs and accidents.</p><p dir="ltr">Our findings indicate a significant increase in critical SSM events such as harsh braking and jerking citywide. These increases are particularly pronounced during off-peak hours and in peripheral areas of Manhattan and transportation hubs. Moreover, we observed stronger correlations between SSMs of TNC vehicles and injury/motorist accidents, compared to those involving pedestrians and cyclists. Despite the evident deterioration in SSMs, we noticed that the overall number of accidents in NYC from 2017 to 2019 has remained relatively stable possibly due to the reduction of traffic speeds. As such, a clustering analysis was conducted to unfold the nuanced patterns of SSMs/accident changes. Also, we find the existence of inequality in the increase in accidents and critical SSMs, and Manhattan is higher in inequality, especially in upper Manhattan. Moreover, individuals disadvantaged from low socioeconomic status and those living in deprived areas are experiencing more inequality from accidents and critical SSMs due to increased TNCs and accidents. This research enriches the understanding of how TNC services impact urban traffic safety. The findings of this research may help to get a holistic understanding of the road safety situations due to increased TNCs and accidents and help the policymakers and authorities to make informed decisions to develop a transportation system prioritizing all road users. Additionally, the methodology employed can be adapted for broader traffic safety applications or real-time monitoring of traffic safety performances using anonymous GPS trajectory segments.</p>
|
Page generated in 0.127 seconds