91 |
Microsegregation and controlled solidification of magnesium-treated cast irons.Riding, Allan Lance. January 1970 (has links)
No description available.
|
92 |
Ephemerality in StasisStone, Lisette 23 May 2019 (has links)
Through an exploration of media and technique, this project sought to represent pregnant silence and portentous darkness within architecture: ephemeral effect drawn in stasis. A sequence of three rooms - formed constructively, but intuited through tone - imagine interior worlds in which the stage is perpetually set, but the performance itself never begins. / Master of Architecture / Through an exploration of media and technique, this project sought to represent pregnant silence and portentous darkness within architecture: ephemeral effect drawn in stasis. A sequence of three rooms - formed constructively, but intuited through tone - imagine interior worlds in which the stage is perpetually set, but the performance itself never begins.
|
93 |
The influence of three different intercalation methods on the properties of exfoliated graphiteVan Heerden, Xandra January 2015 (has links)
It is unclear whether all intercalation techniques truly lead to the insertion of atoms
between the graphite layers, or also lead to other effects which contribute to expansion.
The objective of this project is to better understand the effects caused by different
intercalation methods. Three intercalation methods were explored to determine
the method which incurs the least damage to the surface and microstructure of
the graphite intercalated compounds, yet achieves the best intercalation and therefore
expansion.
All the main findings are summarised below:
The gas phase sample had virtually no mass loss at the point where expansion
took place. Therefore the intercalation was very efficient, producing large
expansion without significant mass loss.
The mass loss that only occurs at the sublimation of iron chloride (320 ºC) indicates
the excessive "un-intercalated" or residual iron chloride.
After oxidation, before purification, the gas phase sample has 25 % residual
mass; this also proves the presence of impurities and residual iron chloride in
the exfoliated sample. For the Hummers and electrochemical samples, expansion and mass loss occur
over a wide temperature range, this indicates that graphite oxide was
formed rather than the theoretically expected "insertion of atoms between the
sheets".
The mass losses before 200 ˚C of the samples of the Hummers and electrochemical
methods are more evidence that graphite oxide and graphite surface
complexes with oxygen were produced.
The Hummers and electrochemical intercalation methods show similar expansion
and mass loss curves, therefore it can be concluded that the reaction
mechanism for both these methods is alike.
The gas phase method yields the best expansion of 250 % using the TMA,
whereas both the other methods deliver approximately 220 %.
Using microwave expansion the electrochemical intercalation method yields
the best bulk volume expansion of 1500 %, with the gas phase sample delivering
a volume expansion of 1450 %.
The Hummers samples are extremely damaged. This is clear from the several and
deep oxidation pits visible throughout the basal plane of these samples. The basal
plane and the edges are even eroded before purification and oxidation. This intercalation
technique employs oxidisers in the preparation method which additionally oxidises
the samples. This explains why the Hummers method renders the most damage.
The residual material on the gas phase sample acts as catalysts making the sample
very reactive and consequently damaging the surface during oxidation. The partially
oxidised purified gas phase sample visibly shows the pits and roughened edges.
There are two “types” of intercalation. The first intercalation “type” is the actual insertion
of atoms or molecules between the graphite layers, whereas the other “type”
of intercalation is the production of graphite oxide. The compound comprises carbon,
oxygen and hydrogen, obtained by treating graphite with strong oxidisers. The
functional groups usually found in graphite oxide are carbonyl (C=O), hydroxyl (-OH), phenol amongst others and also some impurities of sulphur when sulphuric acid is
used. Both these intercalation types lead to expansion.
It is recommended that a more efficient method for removal of residual material in
the gas phase samples be explored. It is also recommended that more research be
done to determine the reaction mechanisms during the three different intercalation
methods. The graphite surface complexes of the intercalated compounds and the
evolved gases during expansion should be analysed. / Dissertation (MEng)--University of Pretoria, 2015. / tm2015 / Chemical Engineering / MEng / Unrestricted
|
94 |
Characterisation of expandable graphite and its flame retardant abilities in flame retardant systems for polyethyleneKruger, Hermanus Joachim January 2017 (has links)
In the pursuit of lower cost intumescent flame retardant (IFR) systems, the compound expandable graphite (EG) was identified. This compound delivers high flame retardant performance but provides non-uniform thermal shielding when exposed to open flame from below due to negative gravitational effects. It was theorised that this may be remedied either through ion exchange of the interstratified ions with low glass transition ions or through use in binary systems with other compounds. Two classes of commercial EG were identified, namely a low and a high expansion onset temperature EG compound. Extensive characterisation of each EG compound was undertaken to assess its composition, expansion mechanisms and onset temperatures in order to identify compatible compounds for binary use. The susceptibility of each compound to ion exchange was also assessed. An industrial IFR ethylenediamine phosphate (EDAP) and a novel flame retardant were synthesised for assessment in binary use with EG. Coupled with the above study, this project developed two novel fire testing techniques as low cost alternatives to well-established fire testing methods such as cone calorimetry.
The first technique involved an open flame fire testing method which allowed vertical or horizontal testing. Digital and infrared (IR) video recording during operation facilitated comparison of multiple performance indicators further strengthening this method. The second technique allowed assessment of the mass loss resistance of each compound during laser pyrolysis. Characterisation of the EG compounds allowed development of structural models to describe each compound and explain the mechanisms of their expansion and gaseous release. Exhaustive ion exchange testing did not deliver favourable results, necessitating the pursuit of compounds for binary use with EG. A novel IFR was synthesised by neutralising 3,5-diaminobenzoic acid hydrochloride salt with ammonium dihydrogen phosphate. This compound, which melts at 257 °C, decomposes concurrently to release carbon dioxide gas which promotes intumescent charring. The flame retardant performance of this compound and EDAP as primary flame retardants and in combination with expandable graphite was evaluated. As a proof of concept, the novel compound was tested as a primary flame retardant using cone calorimetry after which its utility in binary systems with low temperature expandable graphite was tested. Substantial decreases in peak heat release rate (pHRR) and flame out time were achieved for all binary systems. This success led to testing of a number of combinations of low and high expansion onset EG and the other IFRs to identify the highest performing combination, which proved to be the 10-10 EDAP-EG system. Combinations of EG and the novel compound also showed excellent results. The novel fire testing techniques proved effective in identifying high performance combinations and showed comparable trends to those measured in cone calorimetry, at a greatly reduced cost and material requirement. IR analysis of open flame fire testing indicated increases in the temperatures required for ignition and burn through of the substrate. Observations, corroborated by optical video, showed that cohesive and uniform thermal shielding was achieved in all binary systems tested.
This study illustrates that systems of 10% EG combined with either 10% DABAP or 10% EDAP are both the most economical binary systems tested but are extremely high performance systems as well. Both of these systems delivered excellent results while being more economic than the widely used industrial system with a 25-30% EDAP loading. It is recommended that these compounds be considered for industrial use. Furthermore, the effective fire testing techniques developed in this study may be utilised in future fire testing to identify high performance compounds at a lower cost prior to further assessment through methods such as cone calorimetry. / Thesis (PhD)--University of Pretoria, 2017. / Chemical Engineering / PhD / Unrestricted
|
95 |
Morphology-Retaining Carbonization of Helical Aromatic Conjugated Polymers and Their Characteristic Properties / ヘリカル芳香族共役ポリマーの形態保持炭素化とその特性評価Bairu, Yan 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第20408号 / 工博第4345号 / 新制||工||1673(附属図書館) / 京都大学大学院工学研究科高分子化学専攻 / (主査)教授 赤木 和夫, 教授 古賀 毅, 教授 辻井 敬亘 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
96 |
Graphite Oxide And Graphite Oxide-Based Composites : Physicochemical And Electrochemical StudiesRamesha, G K 09 1900 (has links) (PDF)
One of the major directions of research in the area of materials science is to impart multifunctionalities to materials. Carbon stands on the top of the list to provide various multifunctional materials. It exists in all dimensions, zero (fullerene), one (carbon nanotube, CNT), two (graphene) and three (graphite) dimensions are very well-known for their versatility in various studies. They are also used in various applications in nanoelectronics, polymer composites, hydrogen production and storage, intercalation materials, drug delivery, sensing, catalysis, photovoltaics etc. Electrical conductivity of carbon can be tuned from insulator (diamond) to semiconductor (graphene) to conductor (graphite) with varying band gap. The main reason for this versatility and varied properties is that carbon can be involved in different hybridizations. Graphene, a single layer of graphite has fascinated the world during the last several years culminating in a Nobel prize for Physics in 2010. The present study is an attempt to understand the physicochemical and electrochemical properties of graphite oxide and its reduced form.
Graphene oxide (GO) possesses oxygen containing functional groups such as carbonyl, carboxyl and epoxy groups distributed very randomly in the extended graphene sheet which makes it ionically conducting and electrically insulating. The AFM images of single layer of graphite (graphene) obtained from micromechanical cleavage method and that of EGO are shown in figure 1. EGO is a layered material similar to graphite and can form very stable aqueous colloids over a wide pH range of 2-11. The stability of the colloid is due to electrostatic repulsive interactions between the functional groups. EGO behaves like a molecule due to its thickness (~1 nm) and like a particle due to its two dimensional nature (lateral size can vary from nm to few microns). It behaves as amphiphilic molecule having both hydrophilic and hydrophobic nature. Figure 1d shows the STM image of EGO which clearly indicates oxidized and unoxidized regions which will impart hydrophilic and hydrophobic regions respectively.
Figure 1: AFM image of (a) graphene (b) EGO. STM image of (c) HOPG and (d) EGO.
The present work is related to exploring EGO as a multifunctional material. Both hydrophilic and amphiphilic nature is explored for various studies. Reduced GO (rGO) is synthesized from EGO by assembling at different interfaces (solid-liquid and liquid-air) followed by reduction. Since EGO is hydrophilic, it is brought to the air-water interface with the help of a surfactant (CTAB) through electrostatic interactions. It is reduced chemically by hydrazine vapour to rGO and electrochemically by assembling EGO on gold through electrostatic interactions between EGO and amine groups of cystamine (figure 2). The reduction process is followed by AFM, UV-Visible and in-situ Raman spectroelectrochemistry.
Figure 2: Schematic of EGO self assembly, cyclic voltammogram showing electrochemical reduction and schematic for in-situ Raman spectroelectrochemistry.
The next section deals with composites of EGO and polymers. EGO/polyaniline (PANI) composite is formed by electrochemical polymerization under applied surface pressure. The in-situ electrochemical polymerization of aniline in the sub-phase of Langmuir-Blodgett trough under applied surface pressure in presence of EGO at the air-water interface leads to preferential orientation of PANI in the polaronic form. This is followed by electrochemistry and Raman spectroscopy. Figure 3 shows differential pulse voltammograms of EGO/PANI obtained under two different conditions. Externally polymerized sample shows three redox peaks at 0.086/0.064 V (A/A‟), 0.390/0.430 V (B/B‟) and 0.520/0.560 mV (C/C‟) which correspond to leucoemaraldine/emaraldine, quinone/hydroquinone and emaraldine/pernigraniline redox states respectively. The peak at C/C‟ vanishes when aniline is polymerized in-trough under applied surface pressure. This implies that oxidation of emaraldine to pernigraniline becomes difficult when sample is prepared in-trough. The Raman spectroscopy clearly reveals the preferential orientation of PANI in planar polaronic structure.
Figure 3. Differential pulse voltammograms for EGO/PANI complex obtained through external polymerization (black) and in-trough polymerization (red).
In the next part, EGO is used as a proton conducting material for polymer electrolyte membrane fuel cell (PEMFC). EGO possesses hydrophilic and hydrophobic regions similar to nafion (sulfonated tetrafluoroethylene based fluoropolymer-copolymer) and hence it can act as a good ionically conducting membrane. EGO is incorporated in poly(vinyl alcohol) (PVA) matrix and used in the present studies. The ionic conductivity increases from 10 μS cm-1 to 370 μS cm-1 when EGO content is increased from 1wt% to 7wt% in PVA matrix. Power densities of 25 and 90 mW cm-2 are obtained for PVA and PVA/EGO membranes in H2-O2 fuel cell at 40 0C respectively.
In the next section, EGO is used as receptor for simultaneous electrochemical detection of heavy metal ions such as Cd, Pb, Cu and Hg with detection limit of 5 μM, 1 pM, 5 μM and 5 μM respectively. During the process it is observed that the EGO/PbO composite can give rise to detection limit of 10 nM for arsenic. Along with detection, EGO can also be used as an effective adsorbent for inorganics (metal ions) as well as organics (dye molecules). EGO behaves as good adsorbent for heavy metal ions and cationic dyes and rGO adsorbs anionic dyes effectively. Spectroscopic techniques are used to understand the interactions between adsorbent and adsorbates.
The thesis is presented as follows: Chapter 1 gives general introduction about graphene and graphite oxide with particular emphasis on the latter one. Chapter 2 gives details on the experimental methods followed, along with schematics for various adsorption processes. Chapter 3 focuses on assembling EGO at interfaces (solid-liquid and liquid-air) followed by reduction with chemical and electrochemical methods. Chapter 4 explores EGO as an amphiphilic material where EGO is assembled at air-water interface with anilinium and subsequent electropolymerization to EGO/PANI composites. EGO/PVA composite is used as electrolyte for PEMFC. Chapter 5 explores EGO as receptor for heavy metal ion detection (Cd, Pb, Cu and Hg). Chapter 6 deals with EGO as adsorbent for adsorption of inorganics (metal ions) as well as organics (dye molecules). This is followed by summary and conclusions. The appendix section gives details on the studies on preparation of exfoliated graphite with various metal ion intercalation. The covalent functionalization of EGO with metal phthalocyanines and its assembly at air-water interface forms second part of the appendix.
(For figures pl see the abstract pdf file)
|
97 |
Experimental and theoretical investigation of the diffusion length of thermal neutrons in graphiteKaiser, Richard Edward. January 1962 (has links)
LD2668 .T4 1962 K35
|
98 |
Infrared magneto-spectroscopy of graphite and graphene nanoribbonsYu, Wenlong 07 January 2016 (has links)
The graphitic systems have attracted intensive attention recently due to the discovery of graphene, a single layer of graphite. The low-energy band structure
of graphene exhibits an unusual linear dispersion relation which hosts massless Dirac fermions and leads to intriguing electronic and optical properties. In particular, due to the high mobility and tunability, graphene and graphitic materials have been recognized as promising candidates for future nanoelectronics and optoelectronics. Electron-phonon coupling (EPC) plays a significant role in electronic and optoelectronic devices. Therefore, it is crucial to understand EPC in graphitic materials and then manipulate it to achieve better device performance. In the first part of this thesis, we explore EPC between Dirac-like fermions and infrared active phonons in graphite via infrared magneto-spectroscopy. We demonstrate that the EPC can be tuned by varying the magnetic field. The second part of this thesis deals with magnetoplasmons in quasineutral graphene nanoribbons. Multilayer epitaxial graphene grown on the carbon terminated silicon carbide surface behaves like single layer graphene. Plasmons are excited in the nanoribbons of undoped multilayer epitaxial graphene. In a magnetic field, the cyclotron resonance can couple with the plasmon resonance forming the so-called upperhybrid mode. This mode exhibits a distinct dispersion relation, radically different from that expected for conventional two dimensional systems.
|
99 |
The formation of positronium and its application to the study of two-dimensional physisorbed filmsMorton, Robert Simon January 1999 (has links)
No description available.
|
100 |
Supported platinum and iridium catalysts for the selective hydrogenation of cinnamaldehydeTheodoulou, Louise January 2001 (has links)
No description available.
|
Page generated in 0.0187 seconds