Spelling suggestions: "subject:"binding"" "subject:"debinding""
21 |
RhoGTPase signaling in cell polarity and gene regulation /Johansson, Ann-Sofi, January 2006 (has links)
Diss. (sammanfattning) Uppsala : Uppsala universitet, 2006. / Härtill 3 uppsatser.
|
22 |
Cyclic adenosine monophosphate and rho guanine triphosphatase signaling in the guidance of axons to netrin-1Moore, Simon Wayne. January 1900 (has links)
Thesis (Ph.D.). / Written for the Dept. of Neurology and Neurosurgery. Title from title page of PDF (viewed 2008/05/12). Includes bibliographical references.
|
23 |
Cloning, expression, and characterization of a novel guanylate-binding protein, mGBP3 in the murine erythroid progenitor cells /Han, Byung Hee, January 1997 (has links)
Thesis (Ph. D.)--University of Missouri--Columbia, 1997. / "May 1997." Typescript. Vita. Includes bibliographical references (leaves 147-162). Also available on the Internet.
|
24 |
Molecular regulation of opioid receptors /Kovoor, Abraham, January 1998 (has links)
Thesis (Ph. D.)--University of Washington, 1998. / Vita. Includes bibliographical references (leaves [93]-107).
|
25 |
Agonist-dependent regulation of muscarinic acetylcholine receptor expression and function /Schlador, Michael Lee, January 2000 (has links)
Thesis (Ph. D.)--University of Washington, 2000. / Vita. Includes bibliographical references (leaves 149-170).
|
26 |
A model system for investigating biomineralization : elucidating protein G/calcium oxalate monohydrate interactions /Clark, Ruti H. January 2000 (has links)
Thesis (Ph. D.)--University of Washington, 2000. / Vita. Includes bibliographical references (leaves 174).
|
27 |
Guanine nucleotide binding properties and attempted immunopurification of ras protein from dictyostelium discoideumBramble, Sharyl Elizabeth January 1987 (has links)
One purpose of this study was to determine whether the ras protein from Dictyostelium discoideum (p23) binds guanine nucleotides
like the ras proteins from mammals (p21) and yeast. The other purpose of this investigation was to purify or enrich for p23ras from D. discoideum by immunoaffinity chromatography.
A number of different approaches were used to determine guanine nucleotide binding by p23RAS . A simple filter binding assay, binding to Western blots, and photoaffinity labeling all failed to demonstrate specific binding with lysates of D. discoideum cells. In contrast p21RAS from transformed NIH-3T3 cell lysate was successfully photoaffinity labeled in the presence
of ³²P-α-guanosine 5¹-triphosphate (GTP) suggesting that the technique had been performed correctly. It was concluded that either p23RAS has a very low affinity for guanine nucleotides
such that GTP binding was not detectable in these experiments
or that the ras protein from D. discoideum simply does not bind guanine nucleotides.
The purification of p23RAS from D. discoideum cells was attempted in order to provide a purified protein preparation for guanine nucleotide binding and for reconstitution studies. An anti-ras monoclonal antibody (Y13-259) was used as the ligand for the immunoaffinity chromatography. This approach was not successful in that the ras protein could not be enriched
relative to other proteins because the immunoaffinity columns did not bind p23RAS. / Science, Faculty of / Microbiology and Immunology, Department of / Graduate
|
28 |
Assembly and function of multimeric adenylyl cyclase signalling complexesBaragli, Alessandra. January 2007 (has links)
No description available.
|
29 |
Site-directed mutagenesis of beta tubulin's putative GTP-binding domainFarr, George William January 1993 (has links)
No description available.
|
30 |
Structural and Mutational Analysis of Rab2A Activation by Mss4: A DissertationZhu, Zhongyuan 01 November 2000 (has links)
The function of GTP-binding proteins (G-proteins) in diverse intracellular pathways depends on their ability to switch between two forms, a GDP-bound (inactive) form and a GTP bound (active) form in a highly regulated GTPase cycle. The inactivation step of this cycle is regulated by GTPase-activating proteins (GAPs) which increase the intrinsic rate of hydrolysis of bound GTP; the activation step is regulated by a diverse family of GDP/GTP exchange factors (GEFs). A unique model system, which consists of the 13 kDa GEF Mss4 and the monomeric G protein Rab3A involved in presynaptic neurotransmission, was chosen to study the mechanism of G-protein regulation.
Structure of Rab3A at high resolution
The 2.0 Å crystal structure of Rab3A, bound to a non-hydrolyzable GTP-analog (GppNHp), enables a detailed description of the structural determinants that stabilize the active conformation and regulate GTPase activity within the Rab family. Although the overall structure is similar to that of GppNHp-bound Ras and other GTPases, localized but significant differences are observed in the vicinity of the conformational switch regions and the α3/β5 loop. The active conformation is stabilized primarily by extensive hydrophobic contacts between the switch I and II regions. Novel interactions with the γ phosphate, mediated by serine residues in the P-loop and switch I region, impose stereochemical constraints on the mechanism of GTP hydrolysis and provide a structural explanation for the broad range of GTPase activities within the Rab family. Residues implicated in interactions with effectors and regulatory factors map to a common face of the protein. The asymmetric distribution of charged and non-polar residues suggests a plausible orientation with respect to vesicle membranes that would position predominantly hydrophobic surfaces to interact with membrane-associated effectors and regulatory factors. Thus, the structure of Rab3A establishes a framework for understanding the molecular mechanisms underlying the function of Rab proteins in vesicle trafficking.
High resolution structure of Mss4 and structure-based mutagenesis
Activation of monomeric Rab GTPases, which function as ubiquitous regulators of intracellular membrane trafficking, requires the catalytic action of guanine nucleotide exchange factors. Mss4, an evolutionarily conserved Rab exchange factor, promotes nucleotide release from exocytic but not endocytic Rab GTPases. Chapter III describes the results of a high resolution crystallographic and mutational analysis of Mss4. The 1.65 Å crystal structure of Mss4 reveals a network of direct and water mediated interactions that stabilize a partially exposed structural sub-domain derived from four highly conserved but non-consecutive sequence elements. The conserved sub-domain contains the invariant cysteine residues required for Zn2+ binding as well as the residues implicated in the interaction with Rab GTPases. A strictly conserved DΦΦ motif, consisting of an invariant aspartic acid residue (Asp73) followed by two bulky hydrophobic residues (Met74 and Phe75), encodes a prominently exposed 310 helical turn in which the backbone is well ordered but the side chains of the conserved residues are highly exposed and do not engage in intramolecular interactions. Substitution of any of these residues with alariine dramatically impairs exchange activity towards Rab3A, indicating that the DΦΦ motif is a critical element of the exchange machinery. In particular, mutation of Phe75 results in a defect as severe as that observed for mutation of Asp96, which is located near the zinc binding site at the opposite end of Rab interaction epitope. Despite severe defects, however, none of the mutant proteins is catalytically dead. Taken together, the results suggest a concerted mechanism in which distal elements of the conserved Rab interaction epitope cooperatively facilitate GDP release.
The basis for selective recognition of exocytic Rab family GTPases by Mss4
Rab3A is involved in Ca2+ -dependent exocytosis and neurotransmitter release. Mss4, an evolutionarily conserved Rab exchange factor, promotes nucleotide release from exocytic RabGTPase (Rab1, Rab3A, Rab8, and Rab10, Sec4 and Ypt1) but not endocytic Rab GTPases (Rab2, Rab4, Rab5, Rab6, Rab9 and Rab11). To understand the basis for selective recognition of exocytic Rab family GTPases by Mss4, a structure based mutagenesis study of Rab3A was conducted. Three residues in Rab3A (Phe51, Val61 and Thr89) were found to be critical for interaction with Mss4. Phe51 is located at the N- terminus of the switch region, adjacent to the Mg2+ and nucleotide binding site. Val61 in the β2 strand and Thr89 in the switch II region flank a triad of hydrophobic residues that is conserved in the Rab family. These residues comprise critical determinants underlying the broad specificity of Mss4 for exocytic Rab family proteins.
In addition to determining the high resolution crystal structures of Rab3A and Mss4, the experiments described above identify critical structural determinants for the exchange activity of Mss4 and provide insight into the selective recognition of Mss4 by exocytic Rab GTPases.
|
Page generated in 0.0452 seconds