• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 10
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Coupling of dextran T40 to recombinant trichosanthin created by site-directed mutagenesis: the effect on bioactivities, nephrotoxicity and immunogenicity of trichosanthin.

January 1995 (has links)
by Chan Wah Lun. / Thesis (Ph.D.)--Chinese University of Hong Kong, 1995. / Includes bibliographical references (leaves 252-260). / Acknowledgments --- p.i / Abstract --- p.ii / Contents --- p.vi / Naming of TCS mutants and modified TCS protein --- p.x / Abbreviations --- p.xi / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Physical and chemical properties of Trichosanthin --- p.1 / Chapter 1.2 --- Biological activities of Trichosanthin --- p.3 / Chapter 1.3 --- Renal tubular reabsorption and nephrotoxicity of Trichosanthin --- p.10 / Chapter 1.4 --- Objective and strategies of study --- p.11 / Chapter Chapter 2 --- Materials and methods --- p.19 / Chapter 2.1 --- General Techniques --- p.19 / Chapter 2.2 --- Site directed mutagenesis of Trichosanthin --- p.21 / Chapter 2.3 --- DNA sequencing --- p.37 / Chapter 2.4 --- Overexpression of modified Trichosanthin in E. coli --- p.42 / Chapter 2.5 --- Purification of modified Trichosanthin --- p.43 / Chapter 2.6 --- Breaking of Disulphide bridge between modified TCS --- p.44 / Chapter 2.7 --- Coupling of DX T40 to modified Trichosanthin --- p.44 / Chapter 2.8 --- Biological activities of modified Trichosanthin and Dextran-modified trichosantin conjugates --- p.46 / Chapter 2.9 --- Immunogenicity of modified Trichosanthin and Dextran-trichosanthin conjugates --- p.50 / Chapter 2.10 --- Nephrotoxicity of Trichosanthin and Dextran-trichosanthin conjugates --- p.53 / Chapter Chapter 3 --- Construction of TCS mutants --- p.61 / Chapter 3.1 --- Introduction --- p.61 / Chapter 3.2 --- Method --- p.61 / Chapter 3.3 --- Results --- p.62 / Chapter 3.3.1 --- Construction of K173C mutant --- p.62 / Chapter 3.3.2 --- Construction of R29C mutant --- p.64 / Chapter 3.3.3 --- Construction of K173C R29C double mutant --- p.65 / Chapter 3.4 --- Discussion --- p.66 / Chapter Chapter 4 --- "Expression,Purification and Ribosome- inactivating activities of Modified Trichosanthin proteins" --- p.87 / Chapter 4.1 --- Introduction --- p.87 / Chapter 4.2 --- Method --- p.87 / Chapter 4.3 --- Results --- p.88 / Chapter 4.3.1 --- "Expression, purification and ribosome-inactivating activity of K173C" --- p.88 / Chapter 4.3.2 --- "Expression ,purification and ribosome-inactivating activity of R29C" --- p.89 / Chapter 4.3.3 --- "Expression, purification and ribosome-inactivating activity of K173C R29C" --- p.90 / Chapter 4.4 --- Discussion --- p.91 / Chapter Chapter 5 --- Coupling of Dextran T40 to modified Trichosanthin --- p.108 / Chapter 5.1 --- Introduction --- p.108 / Chapter 5.2 --- Method --- p.109 / Chapter 5.3 --- Results --- p.109 / Chapter 5.3.1 --- Coupling of R29C --- p.109 / Chapter 5.3.2 --- Coupling of K173C --- p.111 / Chapter 5.3.3 --- Coupling of R29CK173C --- p.111 / Chapter 5.4 --- Discussion --- p.111 / Chapter Chapter 6 --- Biological Activities of modified Trichosanthin and Dextran-modified trichosanthin conjugates --- p.128 / Chapter 6.1 --- Introduction --- p.128 / Chapter 6.2 --- Method --- p.128 / Chapter 6.3 --- Results --- p.130 / Chapter 6.3.1 --- In vivo Biological activity- Mid-term abortifacient activity --- p.130 / Chapter 6.3.2 --- In vitro biological activities / Chapter 6.3.2a --- Ribosome-inactivating activity --- p.131 / Chapter 6.3.2b --- Anti-tumour activity --- p.132 / Chapter 6.4 --- Discussion --- p.133 / Chapter Chapter 7 --- Immunogenicity of Dextran-modified trichosanthin conjugates --- p.156 / Chapter 7.1 --- Introduction --- p.156 / Chapter 7.2 --- Method --- p.157 / Chapter 7.3 --- Results / Chapter 7.3.1 --- Immunogenicity without denaturation of protein --- p.158 / Chapter 7.3.2 --- Immunogenicity with denaturation of protein --- p.161 / Chapter 7.4 --- Discussion --- p.162 / Chapter Chapter 8 --- Nephrotoxicity of Trichosanthin and Dextran-Trichosanthin conjugates --- p.199 / Chapter 8.1 --- Introduction --- p.200 / Chapter 8.2 --- Method --- p.202 / Chapter 8.3 --- Results --- p.202 / Chapter 8.3.1 --- Functional study on nephrotoxicity of Trichosanthin --- p.202 / Chapter 8.3.2 --- Morphological study on the nephrotoxicity of Trichosanthin --- p.203 / Chapter 8.3.3 --- The effect of coupling of Dextran T40 on the nephrotoxicity of Trichosanthin --- p.206 / Chapter 8.4 --- Discussion --- p.207 / Chapter Chapter 9 --- General Discussion --- p.244 / References --- p.252
2

Determination of phosphorylation sites of Drosophila melanogaster exuperantia protein by site-directed mutagenesis.

January 1999 (has links)
Chan Kam Leung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references (leaves 175-182). / Abstract also in Chinese. / Acknowledgements --- p.i / Abstract --- p.ii / Abbreviations --- p.v / Table of Contents --- p.vii / Chapter Chapter 1 --- General Introduction / Chapter 1.1 --- Drosophila as a model for studying development --- p.1 / Chapter 1.2 --- The formation of the body axis in Drosophila --- p.2 / Chapter 1.3 --- The maternal genes are essential for development --- p.9 / Chapter 1.4 --- Maternal gene bicoid is essential for formation of the anterior structures in the embryo --- p.11 / Chapter 1.5 --- The formation of the biocid protein gradient from anterior pole to posterior pole of the embryo --- p.13 / Chapter 1.6 --- The bed protein gradient controls the downstream zygotic target genes in a concentration-dependent manner --- p.15 / Chapter 1.7 --- The formation of the bed protein gradient in embryo --- p.17 / Chapter 1.8 --- Components required for bcd mRNA localization at anterior pole of oocyte --- p.21 / Chapter 1.8.1 --- Cis-acting elements --- p.21 / Chapter 1.8.2 --- Trans-acting elements --- p.21 / Chapter 1.9 --- The properties of exuperantia protein --- p.25 / Chapter 1.9.1 --- The function of exu protein --- p.25 / Chapter 1.9.2 --- Exuperantia is a phosphoprotein --- p.26 / Chapter 1.9.3 --- Phosphorylation pattern of exuperantia protein is stage-specific --- p.28 / Chapter 1.9.4 --- Reversible phosphorylation is one of the major mechanisms to control protein activity in all eukaryotic cells --- p.29 / Chapter 1.9.5 --- The relationship between the exu protein phosphorylation and the bcd mRNA localization --- p.30 / Chapter 1.10 --- Aim of project --- p.31 / Chapter CHAPTER 2 --- Preparation of the exuperantia genomic DNA and complement DNA (cDNA) mutant Constructs / Chapter 2.1 --- Introduction --- p.33 / Chapter 2.2 --- Materials and methods --- p.35 / Chapter 2.2.1 --- DNA preparation methods --- p.35 / Chapter 2.2.1.1 --- Preparation of double-stranded DNA by polyethylene glycol6000 --- p.35 / Chapter 2.2.1.2 --- Preparation of M13mp8 single-stranded DNA --- p.37 / Chapter 2.2.1.3 --- "Preparation of double-stranded DNA by Biol prep (Modified from Maniatis et al.,1989)" --- p.38 / Chapter 2.2.2 --- "Preparation of DH5α,JM109, TG1 competent cells" --- p.39 / Chapter 2.2.3 --- Bacteria transformation --- p.40 / Chapter 2.2.4 --- Restriction enzyme digestion --- p.40 / Chapter 2.2.5 --- Phenol/chloroform extraction --- p.41 / Chapter 2.2.6 --- Purification of DNA fragment by electro-elution --- p.42 / Chapter 2.2.7 --- DNA ligation --- p.43 / Chapter 2.2.8 --- DNA dephosphorylation --- p.43 / Chapter 2.2.9 --- In vitro site-directed mutagenesis --- p.44 / Chapter 2.2.9.1 --- The Sculptor´ёØ in vitro mutagenesis --- p.44 / Chapter 2.2.9.2 --- The GeneEditor´ёØ in vitro site-directed mutagenesis --- p.47 / Chapter 2.2.10 --- The double-stranded or single-stranded DNA sequencing by T7 DNA polymerase sequencing system --- p.50 / Chapter 2.2.11 --- Denatured polyacrylamide gel electorphoresis --- p.51 / Chapter 2.2.11 --- Nucleotide sequence of the sequencing primers and the mutageneic oligonucleotides --- p.54 / Chapter 2.3 --- Results --- p.55 / Chapter 2.3.1 --- Design exuperantia mutant constructs --- p.55 / Chapter 2.3.1.1 --- Comparison of exu protein amino acids sequence with different Drosophila species --- p.56 / Chapter 2.3.2 --- The exu genomic mutant constructs --- p.63 / Chapter 2.3.3 --- The exu cDNA mutant constructs --- p.63 / Chapter 2.4 --- Discussion --- p.76 / Chapter CHAPTER 3 --- Epitope tagging of exuperantia protein with c-myc eptiope / Chapter 3.1 --- Introduction --- p.79 / Chapter 3.2 --- Materials and methods --- p.84 / Chapter 3.2.1 --- Preparation of the c-myc eptiope DNA fragment --- p.84 / Chapter 3.2.2 --- End-filling of 5'overhang DNA fragment by Klenow fragment --- p.86 / Chapter 3.2.3 --- In vitro translation of protein by TNT® Quick coupled transcription and translation system --- p.86 / Chapter 3.2.4 --- Immunoprecipitation of recombinant exu protein --- p.87 / Chapter 3.2.5 --- Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) --- p.88 / Chapter 3.2.5.1 --- SDS-PAGE preparation --- p.88 / Chapter 3.2.5.2 --- SDS-PAGE electrophoresis --- p.90 / Chapter 3.2.6 --- Western blot analysis --- p.90 / Chapter 3.2.6.1 --- Transfer the protein to a nitro-cellulose membrane by semi-dried blotting --- p.90 / Chapter 3.2.6.2 --- Western blot blocking and antibody recognition --- p.91 / Chapter 3.3 --- Results --- p.92 / Chapter 3.3.1 --- Construction of the plasmid containing exu cDNA tagging with a c-myc epitope --- p.92 / Chapter 3.3.2 --- In vitro translation of c-myc epitope tagged exu protein --- p.102 / Chapter 3.3.3 --- Immunoprecipitation of c-myc labeled exu protein by a polyclonal rabbit anti-exu antibody and monoclonal mouse anti-myc antibody --- p.104 / Chapter 3.4 --- Discussion --- p.109 / Chapter CHAPTER 4 --- In vitro phosphorylation of exuperantia Protein / Chapter 4.1 --- Introduction --- p.111 / Chapter 4.2 --- Materials and methods --- p.113 / Chapter 4.2.1 --- Exogenous kinase phsophorylation reactions --- p.113 / Chapter 4.2.2 --- Separation of the phosphorylated exu protein variants by SDS- PAGE --- p.114 / Chapter 4.3 --- Results --- p.115 / Chapter 4.3.1 --- Western blot analysis of in vitro translated exu protein variants --- p.115 / Chapter 4.3.2 --- Phosphorylation of in vitro translated exu protein variants by exogenous cAMP-dependent protein kinase --- p.118 / Chapter 4.3.3 --- Phosphorylation of in vitro translated exu protein variants by exogenous cGMP-dependent protein kinase --- p.123 / Chapter 4.3.4 --- Phosphorylation of in vitro translated exu protein variants by exogenous protein kinase C --- p.128 / Chapter 4.4 --- Discussion --- p.133 / Chapter CHAPTER 5 --- Introduction of the exuperantia genomic constrcuts into the germline of Drosophila by P element-mediated transformation / Chapter 5.1 --- Introduction --- p.136 / Chapter 5.2 --- Materials and methods --- p.138 / Chapter 5.2.1 --- Construction of a genomic construct for production of transgenic flies --- p.138 / Chapter 5.2.2 --- Preparation of double-stranded DNA by ultra-centrifugation --- p.142 / Chapter 5.2.3 --- P-element mediated transformation --- p.143 / Chapter 5.2.3.1 --- Eggs collection --- p.143 / Chapter 5.2.3.2 --- Dechorionating the eggs --- p.143 / Chapter 5.2.3.3 --- Orientating the eggs --- p.144 / Chapter 5.2.3.4 --- Microinjection --- p.145 / Chapter 5.2.4 --- Collecting virgin female Drosophila --- p.146 / Chapter 5.2.5 --- Setup a crossing experiment --- p.146 / Chapter 5.2.6 --- Preparation of total ovaries and testes extracts exu protein from Female and male Drosophila --- p.147 / Chapter 5.2.7 --- Immunohistochemical distribution of exuperantia protein --- p.147 / Chapter 5.3 --- Results --- p.150 / Chapter 5.3.1 --- Insertion of the mutated exu fragments into the Drosophila Transformation vector (pCaSpeR) --- p.150 / Chapter 5.3.2 --- Introduction of the mutated exu gene into the genome of Drosophila by P-element mediated transformation --- p.153 / Chapter 5.3.3 --- Western blot analysis of the exu protein in the exu (ES2.1) transgenic fly --- p.160 / Chapter 5.3.4 --- Immunohistochemical distribution of exu protein in exuES21 mutants --- p.162 / Chapter 5.3.5 --- Rescue test of exuES2.1 trangenic flies --- p.165 / Chapter 5.4 --- Discussion --- p.168 / Chapter CHAPTER 6 --- General Discussion --- p.171 / References --- p.173 / Chapter Appendix I: --- List of reagents --- p.183 / Chapter Appendix II: --- Publication --- p.187
3

Site-directed mutagenesis of beta tubulin's putative GTP-binding domain

Farr, George William January 1993 (has links)
No description available.
4

The functional significance of rhodopsin's N-linked glycosylation

Murray, Anne Riché. January 2009 (has links) (PDF)
Thesis (Ph. D.)--University of Oklahoma. / Bibliography: leaves 114-126.
5

Determination of the transmembrance topology of mammalian SLC11A2 by an epitope mapping approach

Czachorowski, Maciej. January 1900 (has links)
Thesis (M.Sc.). / Written for the Dept. of Biochemistry. Title from title page of PDF (viewed 2009/06/23). Includes bibliographical references.
6

Effect of novel mutations in androgen receptor upon molecular mechanisms = Efeitos de novas mutações no receptor de andrógenos sobre os mecanismos moleculares / Efeitos de novas mutações no receptor de andrógenos sobre os mecanismos moleculares

Petroli, Reginaldo José, 1980- 25 August 2018 (has links)
Orientadores: Maricilda Palandi de Mello, Fernanda Caroline Soardi / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-25T03:55:23Z (GMT). No. of bitstreams: 1 Petroli_ReginaldoJose_D.pdf: 6228632 bytes, checksum: e6e99d402e3d99ccab57c84290065e84 (MD5) Previous issue date: 2014 / Resumo: O receptor de andrógenos (AR) é um fator de transcrição pertencente à superfamília de receptores nucleares e é ativado por fosforilação e dimerização sob a ligação ao hormônio. Várias funções são atribuídas a este receptor, sendo a principal delas o desenvolvimento e manutenção das características sexuais masculinas, atua na regulação da expressão gênica e diferenciação celular em tecidos alvos. O presente trabalho teve por objetivo principal a análise do efeito das mutações p.Pro695Ser, p.Ser759Tre, p.Leu768Val., p.Cis806Fen+p.Gln798Glu, p.Leu830Fen, p.Ile898Fen e p.Pro904Arg sobre a função do AR. As mutações acima citadas, localizadas no domínio de ligação ao hormônio, foram identificadas por sequenciamento direto do gene do AR de pacientes 46,XY com diferentes graus da Síndrome da Insensibilidade Androgênica (AIS). Mutações nesse domínio geralmente rompem a ligação aos andrógenos naturais, porém há algumas que não afetam essa ligação, mas interferem na interação entre os domínios amino e carboxi-terminal (N/C terminal), importante para a estabilização receptor-ligante. Assim, ambas funções foram investigadas. Para se avaliar a capacidade de transativação das proteínas AR mutantes, foi realizada a técnica de mutagênese sítio dirigida no cDNA completo, seguida de transfecção e expressão em células e mamíferos e, análise de transativação induzida por concentrações crescentes de 5?-diidrotestosterona (DHT) utilizando-se um gene repórter. A análise das interações N/C-terminal para cada AR mutante foi realizada pela técnica de duplo-híbrido em células de mamíferos. A mutação p.Pro695Ser apresentou atividades de transativação de 85% e 82% nos ensaios transativação com o cDNA completo e no duplo-híbrido, respectivamente, em valores de DHT fisiológicos (cerca de 1 nM). As atividades atingiram valores normais em concentrações elevadas de DHT indicando um baixo efeito sobre a atividade gonadal. No entanto, em concentrações de DHT inferiores a atividade de transativação decai para menos de 50% nos dois experimentos, podendo afetar as funções do AR em tecidos não gonadais. Esta mutação foi considerada "branda" e corresponde perfeitamente ao fenótipo masculino do paciente que se apresentava com ginecomastia, mas com fertilidade preservada. Com 1 nM de hormônio, as mutações p.Ser759Tre, p.Leu830Fen, p.Ile898Fen apresentaram atividade de transativação superior a 20%, havendo um aumento de resposta com concentrações crescentes. No entanto, o comportamento de cada uma no experimento de interação N/C diferiu sendo que a p.Ile898Fen não apresentou atividade em nenhuma concentração de ligante; as p.Ser759Tre e p.Leu830Fen responderam positivamente ao aumento da concentração de DHT atingindo 50% e 250% da atividade trancricional do receptor selvagem, respectivamente. Esses resultados indicam um fenótipo parcial de AIS (PAIS) para os portadores das mutações p.Ser759Tre e p.Leu830Fen. Nesses casos verificou-se uma boa correlação dos achados funcionais com os fenótipos dos pacientes que apresentavam graus variados de PAIS. Já para a mutação p.Ile898Fen o fenótipo esperado baseando-se nos resultados funcionais seria o de AIS na forma completa (CAIS), porém os pacientes portadores desta mutação apresentavam graus variados de ambiguidade genital compatíveis com o fenótipo PAIS. Isto indica que outros fatores devem estar influenciando a manifestação fenotípica nesse caso. A mutação p.Leu768Val apresentou atividade transcricional nula em 1 nM de DHT nos dois experimentos, um perfil típico do fenótipo CAIS apresentado pelo portador desta mutação. As mutações p.Gln798Glu e p.Cis806Fen estudadas separadamente apresentaram respostas à indução de DHT semelhantes às de mutações "brandas" e PAIS, respectivamente. No entanto, quando estudadas em conjunto, a atividade de transativação com 1 nM foi inferior a 10%, aumentando com o aumento da concentração de ligante, comportamento compatível com mutações mais graves resultando no fenótipo CAIS observado nesse caso. Por último, a mutação p.Pro904Arg, embora tenha reduzido a atividade trancricional para cerca de 20% da selvagem no experimento com o cDNA completo, no experimento com duplo híbrido a atividade foi nula indicando uma ação mais grave compatível com a forma CAIS observada. A análise funcional do AR aqui realizada pode elucidar alguns mecanismos moleculares associados a cada mutação, bem como pode fornecer subsídios para a resposta ao tratamento com DHT em cada caso em particular / Abstract: The androgen receptor (AR) is a transcription factor that belongs to the superfamily of nuclear receptors activated by phosphorylation and dimerization by hormone binding. Several functions are attributed for AR, like male sex development, regulation of gene expression and cell differentiation in target tissues. The aim of this study was to analyze the effect of mutations p.Pro695Ser, p.Ser759Tre, p.Leu768Val, p.Cys806Phe+ p.Gln798Glu, p.Leu830Phe, p.Ile898Phe and p.Pro904Arg upon AR transactivation activity. All mutations studied here are located in the hormone-binding domain and were identified in patients with different degrees of androgen insensitivity syndrome (AIS) by AR gene sequencing. Mutations in this domain can result in the impairment of androgen ligation, but there are cases that it does not affect the binding but interfere with the interaction between the amino and carboxi-terminal domains (N/C terminal), important step for receptor-binding stabilization. Thus, both functions have been studied in this work. To evaluate the ability of AR transactivation of mutant proteins, the site-directed mutagenesis assay was performed on full-length cDNA, followed by transfection and expression in mammalian cells. The analysis of transactivation of a reporter gene with different dihydrotestosterone (DHT) concentrations was performed. The analysis of N/C-terminal interactions for each mutant AR was performed by two- hybrid mammalian assay. The mutation p.Pro695Ser reveled transactivation activities of 85% and 82% in transactivation assays with the full-length cDNA and two hybrid assay, respectively, at DHT physiological values (approximately 1 nM). The activities reached normal values at high DHT concentrations, indicating a low effect on gonadal activity. However, in low DHT concentrations, the transactivation activity decays to less than 50% in both experiments, which may affect AR functions in non-gonadal tissues. This mutation was considered "mild" and corresponds perfectly to the male phenotype of the patient who presented with gynecomastia, but with preserved fertility. With 1 nM hormone, the p.Ser759Tre, p.Leu830Phe, p.Ile898Phe mutations showed transactivation activity higher than 20%, the response increased with higher DHT concentrations. However, in N/C interaction assays, those mutations showed different results. The p.Ile898Phe revealed a complete disruption in N/C interaction at all hormone concentrations; the p.Ser759Tre and p.Leu830Phe showed positive response with the increasing in DHT concentrations and reached 50% and 250% of the transcriptional activity of wild type, respectively. Such results indicate a partial AIS phenotype (PAIS) as functional effect for p.Ser759Tre and p.Leu830Phe. In these cases there was a positive correlation with the phenotypes of patients that presented different degrees of PAIS. For the p.Ile898Phe, the expected phenotype based on functional analysis would be the complete form of AIS (CAIS), but the patients with this mutation had variable degrees of genital ambiguity consistent to PAIS. This indicates that other factors must influence the phenotypic manifestation. The p.Leu768Val revealed a complete disruption at 1 nM DHT in both experiments, typical of CAIS. The p.Gln798Glu and p.Cys806Phe mutations studied separately revealed responses to the induction of DHT similar to Mild and Partial phenotypes, respectively. However, when analyzed together, the transactivation activity of 1 nM was lower than 10%, increasing in high ligand concentration, which is consistent to CAIS phenotype. Finally, p.Pro904Arg, although showed residual transcriptional activity around 20% of the wild type in the experiment with the full-length cDNA, it abolished the transcriptional activity when N/C terminal interaction was tested indicating a CAIS phenotype, as observed in the patient. Functional analysis of the AR performed here could elucidate some molecular mechanisms associated with each mutation, and may provide a basis for response to treatment with DHT in each particular case / Doutorado / Genetica Animal e Evolução / Doutor em Genetica e Biologia Molecular
7

Leukotriene A4 hydrolase : studies of structure-function relationships by site-directed mutagenesis and X-ray crystallography /

Rudberg, Peter C., January 2004 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2004. / Härtill 4 uppsatser.
8

Investigation of antiviral and anticancer nucleoside analog substrate recognition of drosophila melanogaster and herpes virus deoxyribonucleoside kinases /

Solaroli, Nicola, January 2006 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2006. / Härtill 4 uppsatser.
9

Characterization of a serine/threonine phosphatase-kinase pair in Bacillus anthracis

Shakir, Salika Mehreen. January 2010 (has links) (PDF)
Thesis (Ph. D.)--University of Oklahoma. / Bibliography: leaves 116-129.
10

Functional domains of P450 1A1 and 1A2 molecular modeling-guided structure-function study /

Tu, Youbin. January 1900 (has links)
Thesis (Ph. D.)--West Virginia University, 2008. / Title from document title page. Document formatted into pages; contains vii, 143 p. : ill. (some col.). Includes abstract. Includes bibliographical references.

Page generated in 0.0926 seconds