• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 123
  • 23
  • 22
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 224
  • 58
  • 52
  • 46
  • 41
  • 36
  • 35
  • 26
  • 21
  • 21
  • 20
  • 19
  • 17
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Regulation and function of the Rho GTPase mediated signaling pathways in metastasis and lenticular differentiation

Mitchell, Dianne Courtenay 17 September 2007 (has links)
Modulation of the actin-based cytoskeleton and transcription factor regulation are merely two essential functions in a wide array of cellular activities that the Rho family of small GTPases is responsible for mediating. Aberrations in, or loss of, Rho GTPase signaling has been found to lead to multiple pathologies, including both metastatic progression and lenticular differentiation leading to cataractogenesis. This study has examined the transcriptional regulation of the metastasis suppressor, KiSS-1. Although the mechanism by which KiSS-1 modulates an anti-metastatic effect is not entirely known, it is known that KiSS-1 mediates stress fiber formation, increased adhesion and reduced migratory and invasive properties through modulation of the Rho family of small GTPases. The loss of KiSS-1 that commonly occurs during metastatic progression, leads to a loss of proper Rho GTPase regulation. This study has examined how KiSS-1 is regulated in two tissue types, breast and skin, and how the loss of AP-2(alpha) and DRIP-130, respectively, leads to the progression of breast cancer and melanoma. In addition, this study has also looked at the importance of Rac1 expression and function in the lens epithelium. Activation of Rac1 and its downstream effector, SRF, have been shown to be key regulators in lens cell differentiation, possibly leading to lens opacification via its transcriptional control of the structural crystallins within the lens. The results of this dissertation research have made significant strides in understanding the nature of the anti-metastatic effects registered by the novel KiSS-1 peptide and its cognate GPCR. Additionally, it has shed light on the Rho family regulation of lens epithelial cell differentiation, indicating the elaborate involvement of Rac1 in mediating lens fiber development. In all, this research has determined previously unknown roles of small molecule GTPases in both the progression of metastasis, as well as in normal and abnormal lens cell differentiation.
2

Regulation and function of the Rho GTPase mediated signaling pathways in metastasis and lenticular differentiation

Mitchell, Dianne Courtenay 17 September 2007 (has links)
Modulation of the actin-based cytoskeleton and transcription factor regulation are merely two essential functions in a wide array of cellular activities that the Rho family of small GTPases is responsible for mediating. Aberrations in, or loss of, Rho GTPase signaling has been found to lead to multiple pathologies, including both metastatic progression and lenticular differentiation leading to cataractogenesis. This study has examined the transcriptional regulation of the metastasis suppressor, KiSS-1. Although the mechanism by which KiSS-1 modulates an anti-metastatic effect is not entirely known, it is known that KiSS-1 mediates stress fiber formation, increased adhesion and reduced migratory and invasive properties through modulation of the Rho family of small GTPases. The loss of KiSS-1 that commonly occurs during metastatic progression, leads to a loss of proper Rho GTPase regulation. This study has examined how KiSS-1 is regulated in two tissue types, breast and skin, and how the loss of AP-2(alpha) and DRIP-130, respectively, leads to the progression of breast cancer and melanoma. In addition, this study has also looked at the importance of Rac1 expression and function in the lens epithelium. Activation of Rac1 and its downstream effector, SRF, have been shown to be key regulators in lens cell differentiation, possibly leading to lens opacification via its transcriptional control of the structural crystallins within the lens. The results of this dissertation research have made significant strides in understanding the nature of the anti-metastatic effects registered by the novel KiSS-1 peptide and its cognate GPCR. Additionally, it has shed light on the Rho family regulation of lens epithelial cell differentiation, indicating the elaborate involvement of Rac1 in mediating lens fiber development. In all, this research has determined previously unknown roles of small molecule GTPases in both the progression of metastasis, as well as in normal and abnormal lens cell differentiation.
3

Mécanismes physiopathologies du syndrome de Brugada : caractérisation d'un nouveau gène morbide Rad GTPase / Physiopathological mechanisms of Brugada syndrome

Belbachir, Nadjet 02 October 2017 (has links)
Le syndrome de Brugada est un trouble du rythme cardiaque héréditaire qui mène à l’apparition de fibrillations ventriculaires et à la mort subite cardiaque. Seulement 30% des cas atteints de ce syndrome sont liés à des mutations génétiques et ce à cause de la complexité du phénotype engendré. Le gène RRAD a été identifié dans une famille qui compte 5 membres atteints du syndrome de Brugada, tous porteurs du variant p.R211H. Ce gène code pour la protéine G monomérique Rad dont le rôle principal est de réguler le courant calcique de type L dans les cellules musculaires squelettiques et cardiaques. Cette étude associe trois modèles d’étude visant à discriminer l’implication de Rad dans le phénotype des patients atteints : Un modèle de surexpression pour étudier le rôle de Rad et l’impact de sa surexpression sur l’activité électrique et la structure des cardiomyocytes, des cardiomyocytes dérivés de cellules IPS reprogrammées des patients porteurs de la mutation pour en déterminer le phénotype cellulaire, et un modèle de souris knock in pour la mutation p.R211H généré dans le but d’intégrer le phénotype cellulaire à l’échelle de l’organe entier. Les résultats obtenus sur les trois modèles, montrent que Rad R211H provoque des troubles au niveau de l’activité électrique du coeur mais aussi au niveau de la structure des cellules différenciées et ces troubles se traduisent par des anomalies à l’ECG chez la souris. Cette étude est la première à démontrer l’implication de Rad GTPase dans le syndrome de Brugada et la seule à démontrer, à ce jour, des perturbations du cytosquelette dans cette pathologie qui est toujours considérée comme une pathologie exclusivement rythmique. / Brugada syndrome (BrS) is a rare inherited cardiac disorder linked to high risk of ventricular arrhythmias and sudden death. In the present day, only 30% of BrS cases have known genetic causes. Most of these mutations have been identified in the SCN5A gene that encodes the cardiac voltage-gated sodium channel NaV1.5. We identified a rare variant in the RRAD gene encoding for the small G protein Rad GTPase, in a familial case of BrS. The aim of this work was to elucidate the mechanisms by which the RRAD p.R211H variant could lead to BrS. First, an overexpressing model was developed using neonatal mouse cardiomyocytes to define the involvement of Rad in the electrical function of cardiomyocytes. Then, cardiac cells were derived from human induced pluripotent stem cells reprogrammed from the carriers of the Rad mutation in order to investigate the phenotype induced at the cellular level. Furthermore, a knock in mouse has been generated to study the impact of this same mutation on the organ level. The three models summarized in a complementary way the phenotype caused by the Rad mutation on the electrical activity at the cellular and the organ levels. The mutation seem to trigger structural defects in the cardiomyocytes that can be involved in the electrical defects related to the disease. The present study is the first report of the potential link between Rad GTPase and BrS. The phenotype reported recapitulates the classical electrophysiological signature of the disease but also associates cytoskeleton disturbances.
4

Pftaire1 (Cyclin Dependent Kinase14): Role and Function in Axonal Outgrowth During the development of the CNS

Kamkar, Fatemeh January 2015 (has links)
Cyclin Dependent Kinase (Cdk) family members play a role in CNS development. Cyclin Dependent Kinase 5 (Cdk5) is well known for its fundamental role in neuronal development and axogenesis, as well as, cell death. Other Cdks include Pctaire and Pftaire. Inhibition of Pctaire results in increased axon outgrowth, however, the role and function of Pftaire is unknown. Pftaire1 is a novel member of the Cdk family that was initially detected in a screen for cdc2-like kinases. Unpublished data from our lab reveals that Pftaire1 (Eip63E) deficiency in Drosophila melanogaster results in defects in the axon and neuronal structure of the ventral nerve cord (VNC). In mammals, Pftaire1 is highly, expressed in the CNS. Here, we proposed that Pftaire1 might have a role in axon outgrowth. To investigate the role of Pftaire1 in mammals, the first germline Pftaire1 knockout mice were generated. Considering the severe effects of Eip63E deficiency in Drosophila and the homology between mammalian and fly Pftaire1, CNS defects in the mouse were anticipated. However, to date, no gross abnormalities have been detected in the overall morphology, fertility, life span, or anatomical brain structures of the Pftaire1 deficient mice. This may be due to the presence of other post-mitotic Cdk proteins that are highly similar to Pftaire1. For instance, mammals possess Pftaire (1, and 2), as well as, Pctaire (1, 2, and 3), while Drosophila only possess the Pftaire1 orthologue where the Pftaire2 and Pctaire (1, 2, and 3) are absent. Furthermore, the mice were of mixed background. In spite of this, we demonstrated that Pftaire1 deficient neurons showed increased axon length, in the initial phases of culture. This was confirmed by expression of dominant negative (DN) D228N-Pftaire1 in wild type neurons. Also classification of axons into different ranges, reveals a higher percentage of hyperextended neurites in D228N and Pftaire1 knockout mice. The mechanism by which Pftaire1 controls axon outgrowth is unknown. In this study we show that, Pftaire1 interacts physically with the small GTPase proteins Rac1, Cdc42, and RhoA. Importantly, we showed that Pftaire1 phosphorylates GDP-RhoA on a serine residue. We propose that this regulates RhoA activity, which in turn controls axon outgrowth.
5

Caracterização estrutural e biofísica da septina 7 humana e de seus complexos com as septinas 3 e 9 / Structural and biophysical characterization of human septin 7 and its complexes with septins 3 and 9

Brognara, Gabriel 26 June 2019 (has links)
As septinas são proteínas filogeneticamente classificadas na superclasse das P-loop GTPases e que, juntamente com actina, microtúbulos e filamentos intermediários, são consideradas o quarto componente do citoesqueleto. Para exercer essa função, as septinas tendem a interagir entre si formando heterocomplexos que, posteriormente, polimerizam-se em filamentos. A fim de compreender a arquitetura e dinâmica das septinas, realizou-se a caracterização estrutural e biofísica da septina 7 humana e de seus complexos com as septinas 3 e 9. Devido ao fato da septina 7 ser única em seu grupo, tem-se que a mesma é insubstituível e, portanto, está presente em todos os heterocomplexos descritos. Visando compreender os elementos moleculares responsáveis por tal unicidade, são apresentadas duas estruturas em alta resolução do domínio GTPase da septina 7 ligada a GDP. Pela primeira vez, verificou-se que o cofator Mg2+ está coordenado de uma maneira mais fraca (em relações aos padrões já descritos na literatura) e que o contato entre o switches II na interface-G (ponte-β antiparalela) aparenta estar relacionado ao fenômeno de deslizamento da fita-β3. Na verdade, os resultados indicam que tal fenômeno seria um artifício utilizado pelas septinas a fim de desestimular interfaces promíscuas. Além disso, estudos de termoestabilidade mostraram que as septinas 3 e 9 acabam por diminuir a estabilidade de seus heterodímeros com a septina 7; um resultado que pode estar relacionado com a dinâmica de formação de filamentos. Devido a uma suposta interação mais fraca, tem-se que tais septinas poderiam talvez apresentar uma maior flexibilidade na constituição dos filamentos. Por outro lado, ao realizar a mutação T282Y na septina 3, nota-se que a mesma é responsável por aumentar significativamente a termoestabilidade do heterodímero. A partir da estrutura cristalográfica deste complexo, observou-se que tal tirosina é responsável pelo estabelecimento de interações de hidrogênio com o anel guanina e com a septina 7; promovendo a estabilização da interface-G. Por último, com o intuito de identificar qual interface-NC do heterodímero constituído pelas septinas 7 e 9 é a responsável pela sua oligomerização a um tetrâmero, avaliou-se a dependência de tais septinas com a força iônica. / The septins phylogenetically belong to the P-loop GTPase superclass of proteins and, together with actin, microtubules and intermediate filaments, are considered the fourth component of the cytoskeleton. To perform this role, the septins tend to interact with each other to form heterocomplexes, which can further polymerize into filaments. In order to understand the architecture and dynamics of septins, a structural and biophysical characterization of human septin 7 and its complexes with septins 3 and 9 were performed. Since septin 7 is single in its own group, it is irreplaceable and therefore present in all heterocomplexes. Toward understanding the molecular elements responsible for such unicity, two high-resolution structures of septin 7 GTPase domain complexed with GDP are presented. For the first time, it has been found that the Mg2+ cofactor is weakly coordinated (in relation to the patterns already described in the literature) and that the contact between the switches II at the G-interface (antiparallel β-bridge) appears to be related to the phenomenon of β3-stand slippage. In fact, the results indicate this phenomenon could be thought of as a way to discourage promiscuous interfaces. In addition, thermostability assays have shown that septin 3 and 9 end up decreasing the stability of their heterodimers with septin 7; a result that may be related to the filament dynamics. Due to this supposed weaker interaction, it has been speculated that this septins could perhaps have a greater flexibility in the composition of the filaments. On the other hand, the T282Y mutation inserted into septin 3 significantly increases the heterodimer thermostability. In the crystal structure of this complex, it was observed that this particular tyrosine establishes a hydrogen bond with the guanine ring and with septin 7; promoting the stabilization of the G-interface. Finally, in order to identify which NC-interface of the heterodimer constituted by septin 7 and 9 is responsible for its oligomerization to a tetramer, the dependence of this septins with the ionic strength was analyzed.
6

Conception de nano-anticorps conformationnels comme nouveaux outils d'étude de l'activité des GTPases de la sous-famille RHOA / Conformationnal nanobodies as new way to study RHOA subfamily activity

Keller, Laura 20 January 2017 (has links)
Les GTPases de la sous famille RHOA participent à la régulation de nombreuses voies de signalisation qui contrôlent la dynamique du cytosquelette cellulaire et une grande diversité de fonctions telles que la prolifération, la division, la migration et la polarité cellulaires. Ce sont de véritables interrupteurs moléculaires qui, en réponse à un stimulus, changent de conformation tridimensionnelle pour activer leurs protéines effectrices cibles. Elles existent donc sous deux formes, une forme inactive liant le GDP et une forme active, liant le GTP. La proportion de forme active est extrêmement régulée au niveau spatial et temporel dans une cellule et représente moins de 10% de sa totalité. Depuis près de 20 ans, le seul outil disponible pour étudier leur activation est constitué par le domaine de liaison d'un effecteur, le RBD. Peu stable, faiblement soluble et peu adaptable, de nouveaux outils sont nécessaires afin de mieux comprendre la fine régulation de ces protéines. Les anticorps à simple domaine, VHH ou nanobodies, sont caractérisés par leur stabilité, solubilité, haut rendement de production et versatilité de fonctionnalisation. A partir d'une nouvelle banque d'anticorps à simple domaine optimisée pour la production d'intracorps, nous avons isolés différents clones capables de reconnaître in vitro et de bloquer in cellulo la forme active de ces protéines. L'un de ces clones permettra le développement d'un nouvel outil de mesure de l'activité de ces protéines in vitro tandis qu'un autre, in cellulo, permettra de mieux comprendre la régulation spatiale et temporelle des protéines endogènes. / RHOA small GTPase belongs to a subfamily acting as a molecular switch activating major signaling pathways that regulate cytoskeletal dynamics and a variety of cellular responses such as cell cycle progression, cytokinesis, migration and polarity. RHOA activity resides in a few percent of GTP loaded protein, which is finely tuned by a crosstalk between regulators of the GTPase cycle. Manipulating a single RHO at the expression level often induces imbalance in the activity of other RHO GTPases, suggesting that more specific tools targeting these active pools are needed to decipher RHOA functions in time and space. We decided to use single domain antibodies, also known as VHH or nanobodies, as a new tool for studying RHOA activation. We produced and screened a novel fully synthetic phage display library of humanized nanobodies (NaLi-H1) to develop conformational sensors of the GTP loaded active conformation of RHO subfamily. We obtained several high affinity nanobodies against RHOA's active form which we characterized as RHO active antibodies in vitro and RHO signaling blocking intrabodies in cellulo. These new tools will facilitate and improve our current knowledge of this peculiar protein subfamily and will be a paradigm for the study of other RHO related small GTPases.
7

Activation des petites GTPases à la périphérie des membranes / Small GTPases activation at the periphery of membranes

Peurois, François 12 October 2018 (has links)
Les petites GTPases sont des régulateurs majeurs de nombreux processus cellulaires. La dérégulation de l’activation des petites GTPases est à l’origine de nombreuses maladies comme, entre autres, certains diabètes et cancers. In vivo, l’activation des petites GTPases se fait par des facteurs d’échange nucléotidiques (GEF), qui interagissent avec les GTPases à la périphérie des membranes cellulaires. Au delà d’un simple lieu de co-localisation, les membranes biologiques possèdent des propriétés physico-chimiques impactant directement l’activation des petites GTPases par les GEFs. Ce projet de thèse s’articule autour de trois axes, 1) proposer une stratégie expérimentale pour mesurer quantitativement les effets des membranes dans cette activation, 2) établir un modèle d’activation à la périphérie des membranes du GEF EPAC1, cible thérapeutique de maladies cardiaques 3) caractériser des petites molécules inhibitrices connues d’ArfGEF dans un contexte membranaire. Les résultats ont montré que les membranes modifiaient l’efficacité catalytique des GEFs, et questionnait leur spécificité vis à vis des petites GTPases. Les membranes apparaissent également comme de véritables actrices de l’activation d’EPAC1 en coopération avec l’AMPc. Ces effets pourraient être expliqués par une colocalisation entre GEFs et GTPases à la surface des membranes, l’induction d’un réarrangement conformationnel du GEF par les membranes, une modification de la diffusion latérale des GEF, ou encore une géométrie catalytiquement avantageuse du complexe GEF-GTPase-membrane. Enfin comprendre et expliciter l’implication des membranes dans cette activation amène à imaginer de nouvelles stratégies d’inhibition thérapeutique. / Small GTPases are major regulators of many cellular processes. Nucleotide exchange factors (GEF) activate small GTPases. Deregulation of the activation of small GTPases is at the origin of several diseases, such as certain diabetes and cancers. GTPases and GEFs interact together at the periphery of cell membranes. Beyond a simple place of co-localization, biological membranes have physicochemical properties directly impacting the activation of small GTPases by GEFs. This thesis project is based on three axes, 1) to propose an experimental strategy to quantitatively measure the effects of membranes in this activation 2) to establish a model of the activation at the periphery of membranes of the GEF EPAC1, a therapeutic target in heart diseases, 3) to characterize known ArfGEF inhibitory small molecules in a membrane context. The results showed that membranes modified GEF catalytic efficiency, and questioned their specificity towards small GTPases. The membranes also appear as partners for the activation of EPAC1 in cooperation with cAMP. These effects could be explained by a co-localization between GEF and GTPases on the membranes surfaces, a conformational rearrangement of the GEF induced by membranes, a modification of lateral diffusion of the GEF, or a catalytically advantageous geometry of the GEF-GTPase-membrane complex. Finally, understanding the involvement of membranes in this activation leads us to imagine new therapeutic inhibition strategies.
8

Podjednotka exocystu AtSEC15b: její úloha v morfogenezi rostlinné buńky a charakterizace její interakční Rab GTPázy. / Exocyst subunit AtSEC15b: its role in plant cell morphogenesis and characterization of its Rab interacting partner

Toupalová, Hana January 2011 (has links)
Organization of endomembrane compartments in all eukaryotic cells is dependent on continuous transport of membrane vesicles. Major part of the core regulators of intracellular membrane transport is represented by small GTPases from the Rab family. Rab GTPases cycle between the GTP-bound "active" and GDP-bound "inactive" forms. In their active form, they are able to interact with specific effectors and perform their functions. Exocyst is an octameric complex involved in regulation of secretion. It functions as an effector of Rab GTPases in yeast and mammals and tethers secretory vesicles to the plasma membrane prior to the actual membrane fusion. Using publicly available expression data, we have identified candidates from Rab GTPase family for the interaction with exocyst subunit AtSEC15b in plants and demonstrated that AtSEC15b specifically interacts with AtRABA4a GTPase. We also showed that, like in yeast and mammals, Arabidopsis Sec15b binds Rab GTPase also probably in GTP-dependent manner, implying that this interaction is well conserved throughout the eukaryotic kingdoms. We also successfully demonstrated the complementation of yeast thermo-sensitive mutant strain, sec15-1. Based on this observation we concluded that AtSEC15b is able to substitute the function of yeast SEC15 and restore the phenotype....
9

Characterization of Metal-binding P-loop GTPases: E. coli YeiR and M. thermoacetica AcsF

Flood, Jessica 23 November 2011 (has links)
Organisms express metal-binding proteins in order to deal with essential metal ions that can be potentially toxic. A common trend of bacterial metal homeostasis pathways is the presence of a GTPase, and several of these proteins are members of the G3E family of P-loop GTPases. In this work we focused on E. coli YeiR, member of the under-characterized COG0523 subfamily, and on M. thermoacetica AcsF. The in vitro metal-binding properties of isolated YeiR are presented. The protein binds Ni2+ and Zn2+ with low micromolar affinity, and oligomerizes in the presence of metal. The GTPase activity of YeiR is similar to that measured for other members of the group and is enhanced by Zn2+. In the case of AcsF, it was not possible to establish concluding evidence that the protein binds metal. This study helps shed light upon members of the under-characterized subfamily of G3E P-loop GTPases.
10

Characterization of Metal-binding P-loop GTPases: E. coli YeiR and M. thermoacetica AcsF

Flood, Jessica 23 November 2011 (has links)
Organisms express metal-binding proteins in order to deal with essential metal ions that can be potentially toxic. A common trend of bacterial metal homeostasis pathways is the presence of a GTPase, and several of these proteins are members of the G3E family of P-loop GTPases. In this work we focused on E. coli YeiR, member of the under-characterized COG0523 subfamily, and on M. thermoacetica AcsF. The in vitro metal-binding properties of isolated YeiR are presented. The protein binds Ni2+ and Zn2+ with low micromolar affinity, and oligomerizes in the presence of metal. The GTPase activity of YeiR is similar to that measured for other members of the group and is enhanced by Zn2+. In the case of AcsF, it was not possible to establish concluding evidence that the protein binds metal. This study helps shed light upon members of the under-characterized subfamily of G3E P-loop GTPases.

Page generated in 0.0243 seconds