• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 23
  • 18
  • 16
  • 8
  • 7
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 154
  • 38
  • 31
  • 28
  • 28
  • 28
  • 26
  • 24
  • 23
  • 23
  • 18
  • 17
  • 16
  • 15
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Analyse de distributions spatio-temporelles de transitoires dans des signaux vectoriels. Application à la détection-classification d'activités paroxystiques intercritiques dans des observations EEG

Bourien, Jérôme 20 December 2003 (has links) (PDF)
Les signaux électroencéphalographiques enregistrés chez les patients épileptiques reflètent, en dehors des périodes correspondant aux crises d'épilepsie, des signaux transitoires appelés "activités épileptiformes" (AE). L'analyse des AE peut contribuer à l'étude des épilepsies partielles pharmaco-résistantes. Une méthode de caractérisation de la dynamique spatio-temporelle des AE dans des signaux EEG de profondeur est présentée dans ce document. La méthode est constituée de quatre étapes:<br /><br />1. Détection des AE monovoie. La méthode de détection, qui repose sur une approche heuristique, utilise un banc de filtres en ondelettes pour réhausser la composante pointue des AE (généralement appelée "spike" dans la littérature). La valeur moyenne des statistiques obtenues en sortie de chaque filtre est ensuite analysée avec un algorithme de Page-Hinkley dans le but de détecter des changements abrupts correspondant aux spikes.<br /><br />2. Fusion des AE. Cette procédure recherche des co-occurrences entre AE monovoie à l'aide d'une fenêtre glissante puis forme des AE multivoies.<br /><br />3. Extraction des sous-ensembles de voies fréquement et significativement activées lors des AE multivoies (appelés "ensembles d'activation").<br /><br />4. Evaluation de l'éxistence d'un ordre d'activation temporel reproductible (éventuellement partiel) au sein de chaque ensemble d'activation.<br /><br />Les méthodes proposées dans chacune des étapes ont tout d'abord été évaluées à l'aide de signaux simulés (étape 1) ou à l'aide de models Markoviens (étapes 2-4). Les résultats montrent que la méthode complète est robuste aux effets des fausses-alarmes. Cette méthode a ensuite été appliquée à des signaux enregistrés chez 8 patients (chacun contenant plusieurs centaines d'AE). Les résultats indiquent une grande reproductibilité des distributions spatio-temporelles des AE et ont permis l'identification de réseaux anatomo-fonctionnels spécifiques.
152

Software pro biometrické rozpoznávání duhovky lidského oka / Software for Biometric Recognition of a Human Eye Iris

Maruniak, Lukáš January 2015 (has links)
In my thesis, I focus on the task of recognizing human iris from an image.In the beginning, the work deals with a question of biometrics, its importance and basic concepts, which are necessary for use in following text. Subsequently process of human Iris detection is described together with theory of evolution algorithms. In the implementation part, is described the design of implemented solution, which uses evolution algorithms, where is emphasis on correct pupil and iris boundary detection.
153

Segmentace obrazu pomocí neuronové sítě / Neural Network Based Image Segmentation

Jamborová, Soňa January 2011 (has links)
This work is about suggestion of the software for neural network based image segmentation. It defines basic terms for this topics. It is focusing mainly at preperation imaging information for image segmentation using neural network. It describes and compares different aproaches for image segmentation.
154

Rozpoznávání výrazu tváře / Facial expression recognition

Vránová, Markéta January 2016 (has links)
This project deals with automatic recognition of facial expression in colour pictures. At first, the colour-based face detection is accomplished, three colour spaces are used: RGB, HSV and YCbcCr. As next, the pictures are automatically cropped so that only the face region is present. It is accomplished by computing the borders of the face region based on knowledge of position of eyes, nose and mouth. From the face region, the feature vector is obtained using a bank of Gabor filters. The project introduces two different kinds of Gabor filters and proposes a new bank of filters. The feature vector is used as an input to the neural network. The neural network was trained on a set of pictures from AR database created for facial expression recognition. The output of the network is the facial expression the input picture was assigned to. This project mentions the testing for different settings of the neural network and presents and discuss the recognition results of the network.

Page generated in 0.0231 seconds